Fluorometric imaging plate reader (FLIPR) membrane potential dyes (FMP-Red-Dye and FMP-Blue-Dye) were evaluated for the detection of compounds acting either as positive allosteric modulators or agonists on the GABA(A) receptor (GABA(A)R). A stable HEK293 cell line with constitutive expression of the rat GABA(A)R alpha1, beta2, and gamma2 genes was used to establish a functional high-throughput screening (HTS) assay based on measurement of the membrane potential change in living cells. The assay was validated with the FLIPR technology for identification of agonists and positive allosteric modulators using GABA and diazepam as model compounds. The FMP-Red-Dye showed better performance than the FMP-Blue-Dye, and the effects induced by GABA and diazepam were comparable to electrophysiology data. Subsequently, the assay was also validated with an ultra-HTS approach known as microarrayed compound screening (microARCS). The LOPAC library was used in a test screen for an initial assessment of the technology. Finally, the FLIPR and microARCS technologies were tested with a larger screening campaign. A focused library of 3520 putative positive modulators was tested with the FLIPR assay, and a diverse subset of 84,480 compounds was selected for screening with the microARCS technology. All hits were subjected to verification using the FLIPR technology, and confirmed hits were subsequently evaluated by EC50 determination. Finally, selected hits were further confirmed with electrophysiology testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1087057108315036 | DOI Listing |
Sci Rep
December 2024
School of Medicine, Yichun University, Yichun, 336000, China.
Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.
View Article and Find Full Text PDFPlant Foods Hum Nutr
December 2024
Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.
The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.
View Article and Find Full Text PDFSci Rep
December 2024
College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.
View Article and Find Full Text PDFSci Rep
December 2024
Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary.
Infrared neural stimulation has consistently shown that temperature is a critical neuronal state variable. However, a comprehensive understanding of the biophysical background is essential. In this study, using high-density laminar electrode recordings, we investigated the impact of pulsed and continuous-wave infrared illumination on cortical neurons in anesthetized rats ([Formula: see text]).
View Article and Find Full Text PDFBMC Microbiol
December 2024
Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China.
Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!