I(H) pacemaker channels carry a mixed monovalent cation current that, under physiological ion gradients, reverses at approximately -34 mV, reflecting a 4:1 selectivity for K over Na. However, I(H) channels display anomalous behavior with respect to permeant ions such that (a) open channels do not exhibit the outward rectification anticipated assuming independence; (b) gating and selectivity are sensitive to the identity and concentrations of externally presented permeant ions; (c) the channels' ability to carry an inward Na current requires the presence of external K even though K is a minor charge carrier at negative voltages. Here we show that open HCN channels (the hyperpolarization-activated, cyclic nucleotide sensitive pore forming subunits of I(H)) undergo a fast, voltage-dependent block by intracellular Mg in a manner that suggests the ion binds close to, or within, the selectivity filter. Eliminating internal divalent ion block reveals that (a) the K dependence of conduction is mediated via K occupancy of site(s) within the pore and that asymmetrical occupancy and/or coupling of these sites to flux further shapes ion flow, and (b) the kinetics of equilibration between K-vacant and K-occupied states of the pore (10-20 micros or faster) is close to the ion transit time when the pore is occupied by K alone ( approximately 0.5-3 micros), a finding that indicates that either ion:ion repulsion involving Na is adequate to support flux (albeit at a rate below our detection threshold) and/or the pore undergoes rapid, permeant ion-sensitive equilibration between nonconducting and conducting configurations. Biophysically, further exploration of the Mg site and of interactions of Na and K within the pore will tell us much about the architecture and operation of this unusual pore. Physiologically, these results suggest ways in which "slow" pacemaker channels may contribute dynamically to the shaping of fast processes such as Na-K or Ca action potentials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248720 | PMC |
http://dx.doi.org/10.1085/jgp.200709868 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom.
Much has been learned about Mars through data returned from space missions and analyses of martian meteorites. There are, however, many questions still outstanding which cannot currently be answered-including the issue of whether there is, or was, life on Mars. The return of a cache of samples-including of the atmosphere-from separate locations in Jezero Crater and with differing petrogeneses will provide the international community with the opportunity to explore part of the evolutionary history of Mars in great detail.
View Article and Find Full Text PDFNat Commun
November 2024
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA.
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we find that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs.
View Article and Find Full Text PDFFront Microbiol
October 2024
Central Silk Board, Central Sericultural Research and Training Institute, Berhampore, India.
Eur Biophys J
November 2024
Department of Biophysics, Panjab University, Chandigarh, 160014, India.
Neuropathic pain (NP) is characterized by hyperalgesia, allodynia, and spontaneous pain. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel involved in neuronal hyperexcitability, has emerged as an important target for the drug development of NP. HCN channels exist in four different isoforms, where HCN1 is majorly expressed in dorsal root ganglion having an imperative role in NP pathophysiology.
View Article and Find Full Text PDFCureus
September 2024
Department of Anesthesia, Himalayan Institute of Medical Science, Swami Rama Himalayan University, Dehradun, IND.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!