Dosimetric assessment of simultaneous exposure to elf electric and magnetic fields.

IEEE Trans Biomed Eng

Institute of Health Care Engineering, Graz University of Technology, Inffeldgasse 18, Graz 8010, Austria.

Published: February 2008

In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate assessment of electric and magnetic fields even in the case of simultaneous exposure and, hence, ignore the superposition of intracorporal current densities. Numerical simulations with the Visible Man model show that this can lead to underestimating current densities in the central nervous system (CNS) by up to 29%. While the superposed electric current densities in the CNS still meet the basic restrictions, the situation changes if a fetus with its own CNS requires the same level of protection. When the compliance volume is extended to the trunk, the reference-level electric-field exposure exceeds the basic restrictions by 38%. Depending on the kind of summation of the vectorial contributions, simultaneous exposure to the 50 Hz-5 kV/m electric field and 100-microT magnetic field may lead to a 2.1-fold to 2.6-fold excess of the basic restriction. While this does not prove noncompliance, it indicates that fetal CNS exposure modeling is needed for clarification.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2007.901023DOI Listing

Publication Analysis

Top Keywords

current densities
16
simultaneous exposure
12
electric magnetic
12
magnetic fields
12
electric current
8
basic restrictions
8
electric
6
exposure
5
dosimetric assessment
4
assessment simultaneous
4

Similar Publications

End-of-life lithium-ion batteries (LIBs) present an opportunity to generate a circular economy through recycling. One of the techniques that can contribute to the purification of leached batteries is electrodialysis. In this work, we present a study of current variation in relation to monovalent (Li), divalent (Ni and Co) and trivalent (Al) cations from the synthetic solution of an NCA-type lithium-ion battery leachate, using electrodialysis membranes (HDX-100 and HDX-200) at three different current densities (12.

View Article and Find Full Text PDF

Background And Objectives: Lipid metabolism in older adults is affected by various factors including biological aging, functional decline, reduced physiologic reserve, and nutrient intake. The dysregulation of lipid metabolism could adversely affect brain health. This study investigated the association between year-to-year intraindividual lipid variability and subsequent risk of cognitive decline and dementia in community-dwelling older adults.

View Article and Find Full Text PDF

Direct Assembly of Grooved Micro/Nanofibrous Aerogel for High-Performance Thermal Insulation via Electrospinning.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Maintaining human body temperature in both high and low-temperature environments is fundamental to human survival, necessitating high-performance thermal insulation materials to prevent heat exchange with the external environment. Currently, most fibrous thermal insulation materials are characterized by large weight, suboptimal thermal insulation, and inferior mechanical and waterproof performance, thereby limiting their effectiveness in providing thermal protection for the human body. In this study, lightweight, waterproof, mechanically robust, and thermal insulating polyamide-imide (PAI) grooved micro/nanofibrous aerogels were efficiently and directly assembled by electrospinning.

View Article and Find Full Text PDF

Strategies and Prospects for Engineering a Stable Zn Metal Battery: Cathode, Anode, and Electrolyte Perspectives.

Acc Chem Res

January 2025

Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Shanghai, Fudan University, Shanghai 200433, PR China.

ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs.

View Article and Find Full Text PDF

Microcavity exciton polaritons (polaritons) as part-light part-matter quasiparticles garner considerable attention for Bose-Einstein condensation at elevated temperatures. Recently, halide perovskites have emerged as promising room-temperature polaritonic platforms because of their large exciton binding energies and superior optical properties. However, currently, inducing room-temperature nonequilibrium polariton condensation in perovskite microcavities requires optical pulsed excitations with high excitation densities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!