A concept for designing nontoxic enediyne-based antitumor drugs that was previously suggested (J. Am. Chem. Soc. 2000, 122, 8245) is converted into reality by merging amidines with the natural enediyne dynemicin A. The dynemicin-amidines (DADs) resulting from this combination are biologically not active because they form extremely labile singlet biradicals that can no longer abstract H from DNA. However, if protonated in the acidic environment of the tumor cell, they possess increased biological activity, as is reflected by a lowering of the activation enthalpy for the Bergman cyclization from 16.7 (dynemicin A) to 11-12 kcal/mol (DADs), kinetic stability of the singlet biradicals formed in the cyclization reaction, increased H abstraction ability of the singlet biradicals, and improved docking properties in the minor groove of the duplex 10-mer B-DNA sequence d(CTACTACTGG).d(CCAGTAGTAG) throughout the triggering and Bergman reactions. The implications and the consequences of using DADs to exploit the differences between normal and tumor cells and to design a nontoxic antitumor drugs are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0773536 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!