The abundance of phosphate solubilizing bacteria, together with the alkaline phosphatase (ALPase) activity in the sediment samples of Lake Taihu in different seasons, sites and depths, was analyzed. And the relationship between the distribution of phosphate solubilizing bacteria and the ALPase activity was discussed. Results show that phosphate solubilizing bacteria is universally detected in surface sediments. With the increasing depth, the amount of phosphate solubilizing bacteria decreases. The number of phosphate solubilizing bacteria strains reaches the maximum in autumn while the minimum in winter. ALPase activity ranges from 0.001 mmol (g x min)(-1) to 0.006 mmol (g x min)(-1) and it varies with different sites and seasons and declines with the increasing depth. ALPase activity varies widely above 12cm, and stabilizes about 0.001 mmol x (g x min)(-1) under 12 cm in each site. There is a correlation between ALPase activity and the number of phosphate solubilizing bacteria and the correlation coefficients range from 0.50 to 0.85.
Download full-text PDF |
Source |
---|
Ecotoxicol Environ Saf
January 2025
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
Understanding the complex interactions of plants and soils in the face of global food security and environmental degradation challenges is critical to the future of sustainable agriculture. This review discusses the important link between soil health and crop productivity by providing and comprehensive assessment of soil properties and management methods. By examining the physical, chemical, and biological properties of soil, it uncovers the key limitations posed by the soil environment on crop growth.
View Article and Find Full Text PDFInt Microbiol
January 2025
Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
Background: Seed banks are a vital resource for preserving plant species diversity globally. However, seedling establishment and survival rates from banked seeds can be poor. Despite a growing appreciation for the role of seed-associated microbiota in supporting seed quality and plant health, our understanding of the effects of conventional seed banking processes on seed microbiomes remains limited.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:
The combination of Aspergillus niger (A. niger) and fluorapatite (FAp) has been applied in lead (Pb) immobilization. However, the different pH can affect the stability of the immobilized Pb minerals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!