Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Since the identification of dystrophin as the protein product of the Duchenne and Becker muscular dystrophy locus, many different mutations, encompassing the entire spectrum of gene mutations ranging from point mutations to large deletions, have been found. These discoveries have led to the investigation of a variety of methods aimed at the treatment of muscular dystrophy, including strategies for gene replacement, gene correction, and modification of the gene product. The preferred approach in each case depends on the nature of the gene defect. In this Review, we focus on methods that have been developed for gene correction and for the modification of gene products. This mutation-focused approach offers the opportunity for 'personalized' gene therapy for muscular dystrophy and might also be a logical strategy for the treatment of other genetic disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncpneuro0737 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!