Objective: Gum arabic (GA) is a dietary fiber derived from the dried exudates of Acacia senegal. It is widely used in both the pharmaceutical and food industries as an emulsifier and stabilizer. It is also used in the traditional treatment of patients with chronic kidney disease in Middle Eastern countries. However, the effects of GA on renal function remain ill-defined.
Design: We explored the effects of GA on the water and electrolyte balance of healthy wild-type 129S1/SvImJ mice (n = 18). Feces and urine were collected in metabolic cages before and after 3 or 14 days of treatment with 10% GA in drinking water.
Results: The GA solutions contained particularly high concentrations of Ca2+, Mg2+, and K+. Because of enhanced uptake, treatment with GA significantly increased both the intestinal and renal excretion of Mg2+ and Ca(2+). The latter was accompanied by decreased urinary excretion of inorganic phosphate and decreased plasma concentrations of 1,25-dihydroxy vitamin D. Moreover, GA significantly increased fecal weight and Na+ excretion. Gum arabic increased 24-h creatinine clearance (from 283 +/- 35 to 382 +/- 40 muL/min [SEM]) and urinary antidiuretic hormone excretion, and decreased daily urine output (from 1.8 +/- 0.2 to 1.2 +/- 0.1 mL/24 h) as well as the urinary excretion of Na(+) (from 226 +/- 22 to 196 +/- 19 mumol/24 h). In conclusion, treatment with GA resulted in moderate but significant increases of creatinine clearance and altered electrolyte excretion, i.e., effects favorable in renal insufficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.jrn.2007.08.004 | DOI Listing |
Int J Biol Macromol
January 2025
Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, Le Havre F-76600, France. Electronic address:
In this study, fungal chitosan (FC) and gum Arabic (GA) were combined to develop non-animal complex coacervates for encapsulation. Optimal coacervate formation occurred at pH 5 with a 1:4 (FC:GA) weight ratio. Innovative complementary approaches, including rheology coupled with phase-contrast microscopy, revealed that FC-GA coacervates could withstand high shear rates, reverting to their original structure afterward, making them suitable for industrial applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190025, India.
Encapsulation technology is a suitable tool to protect probiotics in carrier food products and gastrointestinal tract. In the current investigation, the potential of gum arabic, soy protein isolate and their blend as wall material for the encapsulation of five Lactobacillus spp. viz.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
Seed priming can significantly enhance the tolerance of soybean against different environmental stresses by improving seed water uptake and modulating stress-response mechanisms. In particular, seed priming with sodium carboxymethylcellulose (SCMC) and gum Arabic (GA) can support seeds to withstand extreme conditions better, promoting more consistent germination and robust seedling establishment, which is crucial for achieving stable agricultural yields. The present study investigated the effects of seed priming using a combination of SCMC and GA (10% CG) on the germination, growth, and biochemical responses of six soybean varieties under drought and flooding stress conditions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Sericultural and Agrifood Res Inst, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
The objective of this study was to prepare a microcapsule system composed of the inner microenvironment (probiotics), middle oil layer (soybean oil and polyglycerol polyricinoleate) and outer coacervate (whey protein and gum arabic) using double emulsification technique coupled with complex coacervation to encapsulate probiotics, and to evaluate the effect of adding krill oil (KO) to the middle oil layer on microcapsule structure and probiotic stability. The results of Fourier transform infrared spectroscopy and Scanning electron microscopy confirmed that whey protein may capture phospholipids in KO through hydrogen bonds, resulting in the formation of a more compact coacervate. Due to the compact coacervate enhanced the vapor transport barrier and reduced water evaporation during low-temperature dehydration, probiotics encapsulated in KO-supplemented microcapsules revealed less cell damage and a higher survival rate after freeze-drying.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Pomegranate peel polyphenols (PPP) are natural compounds known for their various biological activities; however, they are easily degraded by environmental conditions, leading to a reduction in their biological activity and health benefits. Therefore, improving the stability of PPP is a critical question that needs to be addressed. This study aimed to evaluate the efficacy of five common microcapsule wall materials-carboxymethyl cellulose sodium (CMCNa), sodium alginate (SA), gum Arabic (GA), beta-cyclodextrin (β-CD), and hydroxypropyl starch (HPS)-in encapsulating PPP to enhance its stability and antioxidant activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!