Dihydrocaffeic acid, a dietary constituent and a microbial metabolite of flavonoids, is an antioxidant, but few biological effects have been examined. After its production by microflora in the colon, dihydrocaffeic acid is absorbed and found in plasma as a combination of free and metabolized forms. Excess solar UV radiation provokes damage and initiates immune response and inflammation in skin, sometimes leading to cancer. Dihydrocaffeic acid reduced the cytotoxicity and pro-inflammatory cytokine production (interleukin-6 and -8) in HaCaT cells, a keratinocyte model, following UV radiation. The effect of dihydrocaffeic acid may result from a combination of direct radical scavenging of the reactive oxygen species formed or reinforcement of the antioxidant potential of the keratinocytes, as well as a direct interference with the pathway involved in cytokine stimulation. The minimum structure required for such an effect appears to consist of a propionate side chain attached to a catechol moiety, as indicated by the efficacy of caffeic acid, but not of the methyl and glucuronide conjugates of dihydrocaffeic acid. The data obtained suggest that dihydrocaffeic acid is a potential candidate for photo-protection by interfering with the events initiated after UV exposure in keratinocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2008.01.019 | DOI Listing |
Carbohydr Polym
February 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. Electronic address:
PLoS One
December 2024
Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad, Pakistan.
Phytochemicals derived from plants have gained significant attention in recent years due to their diverse therapeutic properties. Typha elephantina is an aquatic plant having ameliorative characteristics like antioxidant, anti-inflammatory and analgesic etc. This research aims to conduct a comprehensive phytochemical investigation by Tandem mass spectrometry on the aerial parts and roots of Typha elephantina with a focus on identifying and characterizing the bioactive compounds present in it.
View Article and Find Full Text PDFPhytother Res
November 2024
Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Tetrandrine (TET) is a minimally toxic drug extracted from the root of Stephania tetrandra. We previously demonstrated that TET could ameliorate pulmonary fibrosis (PF) by modulating autophagy. However, the mechanism behind TET's protective effects on PF remains unclear.
View Article and Find Full Text PDFMolecules
October 2024
REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
The lipophilization of polyphenols (phenolipids) may increase their affinity for membranes, leading to better antioxidant protection. Cholesteryl esters of caffeic, dihydrocaffeic, homoprotocatechuic and protocatechuic acids were synthetized in a one-step procedure with good to excellent yields of ~50-95%. After evaluation of their radical scavenging capacity by the DPPH method and establishing the anodic peak potential by cyclic voltammetry, their antioxidant capacity against AAPH-induced oxidative stress in soybean PC liposomes was determined.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, PR China; Department of Orthopedics, 302 Hospital of China Guizhou Aviation Industry Group, Anshun, Guizhou 561000, PR China. Electronic address:
The wound healing process was often accompanied by bacterial infection and inflammation. The combination of electrically conductive nanomaterials and wound dressings could accelerate cell proliferation through endogenous electrical signaling, effectively promoting wound healing. In this study, polypyrrole was modified with dopamine hydrochloride by an in situ polymerization to form dopamine-polypyrrole (DA-Ppy) conductive nanofibers which successfully enhanced the water dispersibility and biocompatibility of polypyrrole.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!