Previous studies have described that statins (inhibitors of cholesterol and isoprenoid biosynthesis) inhibit the output of amyloid-beta (Abeta) in the animal model and thus decrease risk of Alzheimer's disease. However, their action mechanism(s) in Abeta precursor protein (APP) processing and Abeta generation is not fully understood. In this study, we report that lovastatin treatment reduced Abeta output in cultured hippocampal neurons as a result of reduced APP levels and beta-secretase activities in low density Lubrol WX (non-ionic detergent) extractable lipid rafts (LDLR). Rather than altering cholesterol levels in lipid raft fractions and thus disrupting lipid raft structure, lovastatin decreased Abeta generation through down-regulating geranylgeranyl-pyrophosphate dependent endocytosis pathway. The inhibition of APP endocytosis by treatment with lovastatin and reduction of APP levels in LDLR fractions by treatment with phenylarsine oxide (a general endocytosis inhibitor) support the involvement of APP endocytosis in APP distribution in LDLR fractions and subsequent APP beta-cleavage. Moreover, lovastatin-mediated down-regulation of endocytosis regulators, such as early endosomal antigen 1, dynamin-1, and phosphatidylinositol 3-kinase activity, indicates that lovastatin modulates APP endocytosis possibly through its pleiotropic effects on endocytic regulators. Collectively, these data report that lovastatin mediates inhibition of LDLR distribution and beta-cleavage of APP in a geranylgeranyl-pyrophosphate and endocytosis-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707757 | PMC |
http://dx.doi.org/10.1111/j.1471-4159.2008.05283.x | DOI Listing |
J Pathol
January 2025
Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
Chitinase 1 (CHIT1), as a chitin-specific hydrolase, significantly influences the progression of Alzheimer's disease (AD) through microglia-associated inflammation and amyloid beta (Aβ) plaque accumulation. However, the precise mechanism of CHIT1 action in AD remains uncertain. The effects of CHIT1 on cerebral blood flow (CBF), hippocampal volume, and cognitive function were investigated in APP/PS1 mice.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
IPMC, UMR7275 CNRS-UniCA, INSERM U1323, team certified "Laboratory of Excellence (LABEX) Distalz", Valbonne, France.
Emerging evidence indicates that autophagy is tightly connected to the endocytic pathway. Here, we questioned the role of presenilins (PSENs 1 and 2), previously shown to be involved in autophagy regulation, in the secretion of small endocytic-originating extracellular vesicles known as exosomes. Indeed, while wild-type cells responded to stimuli promoting both multivesicular endosome (MVE) formation and secretion of small extracellular vesicles (sEVs) enriched in canonical exosomal proteins, PSEN-deficient cells were almost unaffected to these stimuli.
View Article and Find Full Text PDFJ Neurosci
January 2025
Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
The detrimental effects of oligomeric amyloid-β (Aβ) on synapses are considered the leading cause for cognitive deficits in Alzheimer's disease. However, through which mechanism Aβ oligomers impair synaptic structure and function remains unknown. Here, we used electrophysiology and AMPA-receptor (AMPAR) imaging on mice and rat neurons to demonstrate that GluA3 expression in neurons lacking GluA3 is sufficient to re-sensitize their synapses to the damaging effects of Aβ, indicating that GluA3-containing AMPARs at synapses are necessary and sufficient for Aβ to induce synaptic deficits.
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2025
Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, PR China. Electronic address:
Cholesterol dysregulation, disorder of neuronal membrane lipid packing, and lipid rafts lead to the synthesis and accumulation of toxic amyloid-β (Aβ), contributing to the development of Alzheimer's disease (AD). Our study shows that near-infrared (NIR) transcranial photobiomodulation therapy (tPBMT) can reduce Aβ load and restore the properties of neuronal plasma membrane, including Aβ production, bilayer order, rafts, lipid content, and Ca channels during AD. Mice in the experiments were exposed to 808-nm LED for 1 h daily over 3 months.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China. Electronic address:
The LDL Receptor-Related Protein 1(LRP1), a member of the Low-density Lipoprotein (LDL) receptor family, is a multifunctional cellular transporter and signaling receptor, this includes regulation of lipid metabolism, cell migration and signaling. Abnormal accumulation of amyloid beta (Aβ) in the brain is thought to be the main pathological change in Alzheimer's disease. By binding to a variety of ligands, LRP1 is involved in the internalization and degradation of Aβ, thereby affecting the course of Alzheimer's disease (AD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!