The myelin proteolipid protein gene (Plp1) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated - peaking during the active myelination period of CNS development. Previously, we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period. Evidence suggests that the ASE participates in the formation of a specialized multi-protein/DNA complex called an enhanceosome. The current study describes an optimized, five-step, DNA affinity chromatography purification procedure to purify nuclear proteins from mouse brain that bind to the 85-bp ASE sequence, specifically. Electrophoretic mobility shift assay analysis demonstrated that specific DNA-binding activity was retained throughout the purification procedure, resulting in concomitant enrichment of nucleoprotein complexes. Identification of the purported regulatory factors was achieved through mass spectrometry analysis and included over 20 sequence-specific DNA-binding proteins. Supplementary western blot analyses to determine which of these sequence-specific factors are present in oligodendrocytes, and their developmental and regional expression in whole brain, suggest that Puralpha and Purbeta rank highest among the candidate factors as constituents of the multi-protein complex formed on the ASE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634561 | PMC |
http://dx.doi.org/10.1111/j.1471-4159.2008.05288.x | DOI Listing |
ASN Neuro
January 2025
Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA.
Despite tremendous progress in characterizing the myriad cellular structures in the nervous system, a full appreciation of the interdependent and intricate interactions between these structures is as yet unfulfilled. Indeed, few more so than the interaction between the myelin internode and its ensheathed axon. More than a half-century after the ultrastructural characterization of this axomyelin unit, we lack a reliable understanding of the physiological properties, the significance and consequence of pathobiological processes, and the means to gauge success or failure of interventions designed to mitigate disease.
View Article and Find Full Text PDFNeuroimage
January 2025
Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China. Electronic address:
Radiomics has made considerable progress in neurodegenerative diseases. However, previous studies only explored the feasibility of radiomics in clinical applications. Therefore, the objective of this study was to obtain the most relevant radiomics features with the aging changes of myelin proteins and compare their diagnostic performances with the diffusion tensor imaging (DTI) parameters to identify the reliability of these features as imaging biomarkers for assessing brain aging.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy.
Background And Objectives: Antibodies to proteolipid protein-1 (PLP1-IgG), a major central myelin protein also expressed in the peripheral nervous system (PNS) as the isoform DM20, have been previously identified mostly in patients with multiple sclerosis (MS), with unclear clinical implications. However, most studies relied on nonconformational immunoassays and included few patients with non-MS CNS autoimmune demyelinating disorders (ADDs). We aimed to investigate conformational PLP1-IgG in the whole ADD spectrum.
View Article and Find Full Text PDFSci Rep
January 2025
Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
Extracellular vesicles (EVs) play a critical role in the development of neural cells in the central nervous system (CNS). Human neural rosettes (hNRs) are radial cell structures that assemble from induced pluripotent stem cells (hiPSCs) and recapitulate some stages of neural tube morphogenesis. Here we show that hiPSCs and hNRs secrete EVs (hiPSC-EVs and hNR-EVs) with distinctive protein cargoes.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
December 2024
Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia1113, Bulgaria.
Multiple Sclerosis (MS), a debilitating inflammatory disorder of the central nervous system characterized by demyelination, is significantly influenced by polygenic variations. Although the precise cause of MS remains unclear, it is believed to arise from a complex interplay of genetic and environmental factors. Recent investigations have focused on the polygenic nature of genetic alterations linked to MS risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!