Defining reproductively isolated units in a cryptic and syntopic species complex using mitochondrial and nuclear markers: the brooding brittle star, Amphipholis squamata (Ophiuroidea).

Mol Ecol

UMR 6540 - DIMAR, CNRS/Université de la Méditerranée, Aix-Marseille II, Centre d'Océanologie de Marseille, Station Marine d'Endoume, Chemin de la Batterie des Lions, 13007 Marseille, France.

Published: April 2008

At a time when biodiversity is threatened, we are still discovering new species, and particularly in the marine realm. Delimiting species boundaries is the first step to get a precise idea of diversity. For sympatric species which are morphologically undistinguishable, using a combination of independent molecular markers is a necessary step to define separate species. Amphipholis squamata, a cosmopolitan brittle star, includes several very divergent mitochondrial lineages. These lineages appear totally intermixed in the field and studies on morphology and colour polymorphism failed to find any diagnostic character. Therefore, these mitochondrial lineages may be totally interbreeding presently. To test this hypothesis, we characterized the genetic structure of the complex in the French Mediterranean coast using sequences of mitochondrial DNA (16S) and for the first time, several nuclear DNA markers (introns and microsatellites). The data revealed six phylogenetic lineages corresponding to at least four biological species. These sibling species seem to live in syntopy. However, they seem to display contrasted levels of genetic diversity, suggesting they have distinct demographic histories and/or life-history traits. Genetic differentiation and isolation-by-distance within the French Mediterranean coasts are revealed in three lineages, as expected for a species without a free larval phase. Finally, although recombinant nuclear genotypes are common within mitochondrial lineages, the data set displays a total lack of heterozygotes, suggesting a very high selfing rate, a feature likely to have favoured the formation of the species complex.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-294X.2007.03652.xDOI Listing

Publication Analysis

Top Keywords

mitochondrial lineages
12
species
9
species complex
8
brittle star
8
amphipholis squamata
8
french mediterranean
8
lineages
6
mitochondrial
5
defining reproductively
4
reproductively isolated
4

Similar Publications

Adaptive evolution of stress response genes in parasites aligns with host niche diversity.

BMC Biol

January 2025

Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.

Background: Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness.

View Article and Find Full Text PDF

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF

Ochrophyta is a vast and morphologically diverse group of algae with complex plastids, including familiar taxa with fundamental ecological importance (diatoms or kelp) and a wealth of lesser-known and obscure organisms. The sheer diversity of ochrophytes poses a challenge for reconstructing their phylogeny, with major gaps in sampling and an unsettled placement of particular taxa yet to be tackled. We sequenced transcriptomes from 25 strategically selected representatives and used these data to build the most taxonomically comprehensive ochrophyte-centered phylogenomic supermatrix to date.

View Article and Find Full Text PDF

The origin of domestic sheep (Ovis aries) can be traced back to the Asian mouflon (Ovis gmelini), in the Near East around 10 000 years ago. Genetic divergence within mouflon populations can occur due to factors such as geographical isolation, social structures, and environmental pressures, leading to different affinities with domestic sheep. However, few studies have reported the extent to which mouflon sheep contribute to domestic sheep in different regions.

View Article and Find Full Text PDF

The reduced cost of next-generation sequencing (NGS) has allowed researchers to generate nuclear and mitochondrial genome data to gain deeper insights into the phylogeography, evolutionary history and biology of non-model species. While the Cape buffalo () has been well-studied across its range with traditional genetic markers over the last 25 years, researchers are building on this knowledge by generating whole genome, population-level data sets to improve understanding of the genetic composition and evolutionary history of the species. Using publicly available NGS data, we assembled 40 Cape buffalo mitochondrial genomes (mitogenomes) from four protected areas in South Africa, expanding the geographical range and almost doubling the number of mitogenomes available for this species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!