Purpose: To assess the effect of the composite surface conditioning on the microtensile bond strength of a resin cement to a composite used for inlay/onlay restorations.
Materials And Methods: Forty-two blocks (6 x 6 x 4 mm) of a microfilled composite (Vita VMLC) were produced and divided into 3 groups (N = 14) by composite surface conditioning methods: Gr1--etching with 37% phosphoric acid, washing, drying, silanization; Gr2--air abrasion with 50-lm Al203 particles, silanization; Gr3--chairside tribochemical silica coating (CoJet System), silanization. Single-Bond (one-step adhesive) was applied on the conditioned surfaces and the two resin blocks treated with the same method were cemented using RelyX ARC (dual-curing resin cement). The specimens were stored for 7 days in water at 37 degrees C and then sectioned to produce nontrimmed beam samples, which were submitted to microtensile bond strength testing (muTBS). For statistical analysis (one-way ANOVA and Tukey's test, alpha = 0.05), the means of the beam samples from each luted specimen were calculated (n = 7).
Results: muTBS values (MPa) of Gr2 (62.0 +/- 3.9a) and Gr3 (60.5 +/- 7.9a) were statistically similar to each other and higher than Gr1 (38.2 +/- 8.9b). The analysis of the fractured surfaces revealed that all failures occurred at the adhesive zone.
Conclusion: Conditioning methods with 50-lm Al203 or tribochemical silica coating allowed bonding between resin and composite that was statistically similar and stronger than conditioning with acid etching.
Download full-text PDF |
Source |
---|
Adversity in childhood is robustly associated with persistent pain in adulthood. Neuro-immune interactions are a candidate mechanistic link between childhood adversity and persistent pain, given that both childhood adversity and persistent pain are associated with neural and immune upregulation in adulthood. As such, we aimed to clarify whether immune reactivity is associated with provoked differences in nociceptive processing in humans.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland.
Gold nanobowls (AuNBs) synthesized by the template-free method were deposited on graphene oxide (GO) to obtain an ultrasensitive surface enhanced Raman spectroscopy (SERS) platform for folic acid (FA) detection. GO was conditioned in aqueous solutions at various pH values to optimize the adsorption of the FA molecule and the intensity of the SERS signal. It was found that the conditioning procedure influences the orientation of FA on the SERS supports and the quality of the spectra in result.
View Article and Find Full Text PDFACS Sens
January 2025
College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.
J Orthod
January 2025
Department of Oral Biology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.
Aim: To compare microleakage beneath ceramic and metal brackets prepared with either acid etching or laser conditioning.
Design: An in vitro study.
Setting: Department of Orthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.
Anticancer Res
January 2025
Eisai Inc., Cambridge, MA, U.S.A.
Background/aim: Preclinical studies were undertaken to investigate whether eribulin's known cytotoxic antimitotic effects are characterized by immunogenic cell death (ICD) as assessed by three established ICD biomarkers: extracellular released ATP, released HMGB1 and cell surface calreticulin.
Materials And Methods: Using BT-549, Hs578T and MCF-7 breast cancer cell lines, antiproliferative IC's of eribulin, five other microtubule targeting agents (MTAs; ER-076349, vinblastine, vinorelbine, paclitaxel, docetaxel) and three DNA damaging agents (DDAs; doxorubicin, cisplatin, oxaliplatin) were determined.
Results: Treatment of cells with 10×IC concentrations of all drugs in serum-free media resulted in time-dependent induction of cytotoxicity over DMSO controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!