The neuronal ceroidlipofuscinoses (NCL) are a group of neurodegenerative disorders and are the most common lysosomal storage diseases of infancy and childhood. Juvenile NCL is caused by CLN3 mutation, producing retinal degeneration, uncontrollable seizures, cognitive and motor decline, and early death before the age of 30 years. To study the pathogenetic mechanisms of the disease, Cln3 knock-in mice (Cln3(Deltaex7/8)) have been generated, which reproduce the 1.02-kb deletion in the CLN3 gene observed in more than 85% of juvenile NCL patients. To characterize the impact of the common Cln3 mutation on development of autofluorescent storage material, gliosis, glucose metabolism, oxidative stress, and transmitter receptors during postnatal brain maturation, brain tissue of Cln3(Deltaex7/8) mice at the ages of 3, 4, 5, 6, 9, and 19 months was subjected to immunocytochemistry to label gliotic markers and nitric oxide synthases; photometric assays to assess enzyme activities of glycolysis and antioxidative defense systems; and level of reactive nitrogen species as well as quantitative receptor autoradiography to detect select cholinergic, glutamatergic, and GABAergic receptor subtypes. The developmental increase in cerebral cortical autofluorescent lipofuscin-like deposition is accompanied by a significant astro- and microgliosis, increased activities of lactate dehydrogenase and phosphofructokinase, decreased level of glutathione peroxidase, enhanced amount of reactive nitrogen species, and lowered binding levels of N-methyl-D-aspartate- and M1-muscarinic acetylcholine receptors in select brain regions but hardly in GABA(A) receptor sites compared with wild-type mice. Detailed elucidation of the sequence of pathological events during postnatal development highlights new potential strategies for symptomatic treatment of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.21630DOI Listing

Publication Analysis

Top Keywords

knock-in mice
8
juvenile ncl
8
cln3 mutation
8
reactive nitrogen
8
nitrogen species
8
developmental impairments
4
impairments select
4
select neurotransmitter
4
neurotransmitter systems
4
systems brains
4

Similar Publications

ADSL promotes autophagy and tumor growth through fumarate-mediated Beclin1 dimethylation.

Nat Chem Biol

January 2025

Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.

As an enzyme with a critical role in de novo purine synthesis, adenylosuccinate lyase (ADSL) expression is upregulated in various malignancies. However, whether ADSL possesses noncanonical functions that contribute to cancer progression remains poorly understood. Here, we demonstrate that protein kinase R-like endoplasmic reticulum kinase (PERK) activated by lipid deprivation or ER stress phosphorylates ADSL at S140, leading to an enhanced association between ADSL and Beclin1.

View Article and Find Full Text PDF

Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain.

Proc Natl Acad Sci U S A

February 2025

Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.

Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation.

View Article and Find Full Text PDF

Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine.

Proc Natl Acad Sci U S A

February 2025

Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a neurodegenerative disease caused by mutations in the gene encoding transthyretin (TTR). Despite amyloid deposition being pathognomonic for diagnosis, this pathology in nervous tissues cannot fully account for nerve degeneration, implying additional pathophysiology for neurodegeneration, which, however, has not yet been fully elucidated. In this study, neuroinflammation in ATTRv-PN was investigated by examining nerve morphometry, the blood-nerve barrier, and macrophage infiltration in the sural nerves of ATTRv-PN patients and the sciatic nerves of a complementary mouse system, i.

View Article and Find Full Text PDF

Dental manifestations of hypophosphatasia: translational and clinical advances.

JBMR Plus

February 2025

Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States.

Hypophosphatasia (HPP) is an inherited error in metabolism resulting from loss-of-function variants in the gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP plays a crucial role in biomineralization of bones and teeth, in part by reducing levels of inorganic pyrophosphate (PP), an inhibitor of biomineralization. HPP onset in childhood contributes to rickets, including growth plate defects and impaired growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!