Enzymatic and chemical cleavage of fusion proteins.

Curr Protoc Mol Biol

Genetic Institute, Cambridge, Massachusetts, USA.

Published: May 2001

This unit provides protocols for some commonly used methods of site-specific cleavage of fusion proteins. The first three protocols describe enzymatic cleavage of proteins using proteases (factor Xa, thrombin, and enterokinase) that display highly restricted specificities, which greatly decrease the likelihood that unwanted secondary cuts will occur. Three additional protocols describe specific cleavage of fusion proteins with chemical reagents (cyanogen bromide, hydroxylamine, and low pH) as an alternative to enzymatic cleavage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/0471142727.mb1604bs28DOI Listing

Publication Analysis

Top Keywords

cleavage fusion
12
fusion proteins
12
protocols describe
8
enzymatic cleavage
8
cleavage
5
enzymatic chemical
4
chemical cleavage
4
proteins
4
proteins unit
4
unit protocols
4

Similar Publications

Recombinant Expression of a New Antimicrobial Peptide Composed of hBD-3 and hBD-4 in Escherichia coli and Investigation of Its Activity Against Multidrug-Resistant Bacteria.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, No. 20 Dongda Street, Beijing, 100071, Fengtai District, China.

Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications.

View Article and Find Full Text PDF

During out-of-area military operations, the presence of carcinogenic and/or genotoxic agents has been reported, posing potential health risks to deployed soldiers. Military working dogs (MWDs), trained to detect explosives in the same environments as soldiers, could also serve as sentinel animals, providing valuable information on exposure to hazardous agents. These dogs can help identify environmental and potential adverse effects on their health and that of their handlers, possibly before relevant pathologies manifest.

View Article and Find Full Text PDF

Background: Newcastle disease significantly impacts the global poultry industry and is prevalent in many African countries, including Ethiopia. The objective of this research is to determine the humoral immune response to Newcastle Disease Virus (NDV), identify the circulating NDV genotype, and evaluate the correlation between the diagnostic tests used in backyard chickens in the Jimma Zone, southwest Ethiopia.

Methods: A total of 90 swab and blood samples were purposively collected from symptomatic backyard chicken in the period between February and April 2022.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are renowned for their potent bacteriostatic activity and safety, rendering them invaluable in animal husbandry, food safety, and medicine. Despite their potential, the physiological toxicity of AMPs to host cells significantly hampers their biosynthetic production. This study presents a novel approach for the biosynthesis of the antimicrobial peptide Kiadin by engineering a DAMP4-DPS-Kiadin fusion protein to mitigate host cell toxicity and achieve high-level expression.

View Article and Find Full Text PDF

Pigeon paramyxovirus type-1 (PPMV-1) is the causative agent of pigeon Newcastle disease (ND), which has caused huge losses to the pigeon industry. In this study, a PPMV-1 strain, PPMV-1/QH-01/CH/23, was isolated from a sick racing pigeon in the Qinghai-Tibet Plateau, China in 2023. The mean death time of chicken embryos and the intracerebral pathogenicity index (ICPI) were 76.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!