Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The influence of added polynucleotide on the gelation ability of nucleobase-appended organogelators was investigated. Uracil-appended cholesterol gelator formed a stable organogel in polar organic solvents such as n-butanol. It was found that the addition of the complementary polyadenylic acid (poly(A)) not only stabilizes the gel but also creates the helical structure in the original gel phase. Thymidine and thymine-appended gelators can form stable gel in apolar solvents, such as benzene, where poly(A)-lipid complex can act as a complementary template for the gelator molecules to create the fibrous composites. Based on these findings, we can conclude that self-assembling modes and gelation properties of nucleobase-appended organogelators are controllable by the addition of their complementary polynucleotide in organic solvents. We believe, therefore, that the present system can open the new paths to accelerate development of well-controlled one-dimensional molecular assembly systems, which would be indispensable for the creation of novel nanomaterials based on organic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b713354e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!