In this study, we establish an MCF-7 xenograft model that mimics the progression of human breast carcinomas typified by loss of p53 integrity, development of centrosome amplification, acquired estrogen receptor (ERalpha) heterogeneity, overexpression of Mdm2 and metastatic spread from the primary tumor to distant organs. MCF-7 cells with abrogated p53 function (vMCF-7(Dnp53)) maintained nuclear ERalpha expression and normal centrosome characteristics in vitro. However, following mitogen stimulation, they developed centrosome amplification and a higher frequency of aberrant mitotic spindles. Centrosome amplification was dependent on cdk2/cyclin activity since treatment with the small molecule inhibitor SU9516 suppressed centriole reduplication. In contrast to the parental MCF-7 cells, when introduced into nude mice as xenografts, tumors derived from the vMCF-7(DNp53) cell line developed a strikingly altered phenotype characterized by increased tumor growth, higher tumor histopathology grade, centrosome amplification, loss of nuclear ERalpha expression, increased expression of Mdm-2 oncoprotein and resistance to the antiestrogen tamoxifen. Importantly, while MCF-7 xenografts did not develop distant metastases, primary tumors derived from vMCF-7(DNp53) cells gave rise to lung metastases. Taken together, these observations indicate that abrogation of p53 function and consequent deregulation of the G1/S cell cycle transition leads to centrosome amplification responsible for breast cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2526020PMC
http://dx.doi.org/10.1038/onc.2008.18DOI Listing

Publication Analysis

Top Keywords

centrosome amplification
24
p53 function
12
leads centrosome
8
amplification acquired
8
distant metastases
8
breast cancer
8
mcf-7 xenografts
8
mcf-7 cells
8
nuclear eralpha
8
eralpha expression
8

Similar Publications

Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics.

Eur J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.

View Article and Find Full Text PDF

Targeting the mitotic kinase NEK2 enhances CDK4/6 inhibitor efficacy by potentiating genome instability.

J Biol Chem

January 2025

Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA. Electronic address:

Selective inhibitors that target cyclin dependent kinases 4 and 6 (CDK4/6i) are FDA approved for treatment of a subset of breast cancers and are being evaluated in numerous clinical trials for other cancers. Despite this advance, a subset of tumors are intrinsically resistant to these drugs and acquired resistance is nearly inevitable. Recent mechanistic evidence suggests that in addition to stalling the cell cycle, the anti-tumor effects of CDK4/6i involve the induction of chromosomal instability (CIN).

View Article and Find Full Text PDF

OTUD6B regulates KIFC1-dependent centrosome clustering and breast cancer cell survival.

EMBO Rep

January 2025

Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.

Cancer cells often display centrosome amplification, requiring the kinesin KIFC1/HSET for centrosome clustering to prevent multipolar spindles and cell death. In parallel siRNA screens of deubiquitinase enzymes, we identify OTUD6B as a positive regulator of KIFC1 expression that is required for centrosome clustering in triple-negative breast cancer (TNBC) cells. OTUD6B can localise to centrosomes and the mitotic spindle and interacts with KIFC1.

View Article and Find Full Text PDF

STIL is a regulatory protein essential for centriole biogenesis, and its dysregulation has been implicated in various diseases, including malignancies. However, its role in non-small-cell lung carcinoma (NSCLC) remains unclear. In this study, we examined STIL expression and its potential association with chromosomal numerical abnormalities (CNAs) in NSCLC using The Cancer Genome Atlas (TCGA) dataset, immunohistochemical analysis, and in vitro experiments with NSCLC cell lines designed to overexpress STIL.

View Article and Find Full Text PDF

Renal diseases, including cancer, are rapidly increasing worldwide, driven by rising temperatures and changing diets, especially among younger people. Renal stones, a major risk for chronic renal disease, are increasingly common due to various health issues. Research on the underlying mechanisms, drug discovery, and the effects of aging and stress is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!