Metnase, also known as SETMAR, is a SET and transposase fusion protein with an undefined role in mammalian DNA repair. The SET domain is responsible for histone lysine methyltransferase activity at histone 3 K4 and K36, whereas the transposase domain possesses 5'-terminal inverted repeat (TIR)-specific DNA binding, DNA looping, and DNA cleavage activities. Although the transposase domain is essential for Metnase function in DNA repair, it is not clear how a protein with sequence-specific DNA binding activity plays a role in DNA repair. Here, we show that human homolog of the ScPSO4/PRP19 (hPso4) forms a stable complex with Metnase on both TIR and non-TIR DNA. The transposase domain essential for Metnase-TIR interaction is not sufficient for its interaction with non-TIR DNA in the presence of hPso4. In vivo, hPso4 is induced and co-localized with Metnase following ionizing radiation treatment. Cells treated with hPso4-siRNA failed to show Metnase localization at DSB sites and Metnase-mediated stimulation of DNA end joining coupled to genomic integration, suggesting that hPso4 is necessary to bring Metnase to the DSB sites for its function(s) in DNA repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2431028 | PMC |
http://dx.doi.org/10.1074/jbc.M800150200 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China. Electronic address:
Cigarette smoke (CS) has detrimental effects on placental growth and embryo development, but the underlying mechanisms remain unclear. This study aims to investigate the impact of CS on trophoblast cell proliferation and regulated cell death (RCD) by examining its interference with iron-sulfur cluster (ISC) proteins and the CIA pathway. Exposure to CS disrupted the cytosolic ISC assembly (CIA) pathway, downregulated ISC proteins, and decreased ISC maturation in the placenta of rats exposed to passive smoking.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Research Institute of the, McGill University Health Centre, Montreal, QC, Canada.
The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants.
View Article and Find Full Text PDFAm J Transl Res
December 2024
Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University 801 Heqing Road, Shanghai 200240, China.
Objective: This study investigates the mechanism underlying sorafenib resistance in hepatocellular carcinoma cells (HCC), focusing on DNA damage repair (DDR) pathways to develop targeted therapeutic strategies.
Methods: Bioinformatics analysis was used to screen genes associated with sorafenib resistance, which was further demonstrated by western blotting. Cell proliferation was determined using the EdU assay.
Cancer Sci
January 2025
Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, Japan.
Colorectal cancer (CRC) is well characterized in terms of genetic mutations and the mechanisms by which they contribute to carcinogenesis. Mutations in APC, TP53, and KRAS are common in CRC, indicating key roles for these genes in tumor development and progression. However, for certain tumors with low frequencies of these mutations that are defined by tumor location and molecular phenotypes, a carcinogenic mechanism dependent on BRAF mutations has been proposed.
View Article and Find Full Text PDFTech Coloproctol
January 2025
Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Background: Neoadjuvant combination immunotherapy is a potential treatment option for patients with proficient mismatch repair/microsatellite stable colorectal cancer. Preoperative screening via endoscopy and imaging examinations could help identify patients who may potentially achieve a complete response after neoadjuvant combination immunotherapy. This study aims to evaluate the diagnostic accuracy of endoscopic and imaging examinations in predicting pathological complete response after neoadjuvant combination immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!