AI Article Synopsis

  • Myofibroblasts in valve interstitial cell (VIC) populations play a key role in the development of fibrotic valvular disease, with significant differences observed in their abundance between normal and sclerotic porcine aortic valves.
  • In normal valves, myofibroblasts were rare, while sclerotic valves contained abundant clusters of these cells, which expressed myofibroblast markers and other proteins associated with their differentiation.
  • The study also identified a small population of VICs with stem cell characteristics that can differentiate into myofibroblasts under certain conditions, highlighting the importance of factors like substrate rigidity and tensile forces in their development, with cofilin emerging as a crucial marker for this process

Article Abstract

The formation of myofibroblasts in valve interstitial cell (VIC) populations contributes to fibrotic valvular disease. We examined myofibroblast differentiation in VICs from porcine aortic valves. In normal valves, cells immunostained for alpha-smooth muscle actin (alpha-SMA, a myofibroblast marker) were rare (0.69 +/- 0.48%), but in sclerotic valves of animals fed an atherogenic diet, myofibroblasts were spatially clustered and abundant (31.2 +/- 6.3%). In cultured VIC populations from normal valves, SMA-positive myofibroblasts were also spatially clustered, abundant (21% positive cells after 1 passage), and stained for collagen type I and vimentin but not desmin. For an analysis of stem cells, two-color flow cytometry of isolated cells stained with Hoechst 33342 demonstrated that 0.5% of VICs were side population cells; none stained for SMA. Upon culture, sorted side population cells generated approximately 85% SMA-positive cells, indicating that some myofibroblasts originate from a rare population with stem cell characteristics. Plating cells on rigid collagen substrates enabled the formation of myofibroblasts after 5 days in culture, which was completely blocked by culture of cells on compliant collagen substrates. Exogenous tensile force also significantly increased SMA expression in VICs. Isotope-coded affinity tags and mass spectrometry were used to identify differentially expressed proteins in myofibroblast differentiation of VICs. Of the nine proteins that were identified, cofilin expression and phospho-cofilin were strongly increased by conditions favoring myofibroblast differentiation. Knockdown of cofilin with small-interfering RNA inhibited collagen gel contraction and reduced myofibroblast differentiation as assessed by the SMA incorporation into stress fibers. When compared with normal valves, diseased valves showed strong immunostaining for cofilin that colocalized with SMA in clustered cells. We conclude that in VICs, cofilin is a marker for myofibroblasts in vivo and in vitro that arise from a rare population of stem cells and require a rigid matrix for formation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.01305.2007DOI Listing

Publication Analysis

Top Keywords

myofibroblast differentiation
20
cells
12
normal valves
12
cofilin marker
8
porcine aortic
8
formation myofibroblasts
8
vic populations
8
differentiation vics
8
myofibroblasts spatially
8
spatially clustered
8

Similar Publications

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Fibrosis in PCLS: comparing TGF-β and fibrotic cocktail.

Respir Res

January 2025

Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

Introduction: Fibrotic cocktail (FC) is a combination of pro-fibrotic and pro-inflammatory mediators that induces early fibrotic changes in organotypic lung models. We hypothesised that transforming growth factor beta 1 (TGF-β1) alone induces a pro-fibrotic effect similar to FC. Our aim was to compare the pro-fibrotic effects of TGF-β1 with FC in human precision-cut lung slices (PCLS).

View Article and Find Full Text PDF

A splenic inflammatory pseudotumour (IPT) is a rare condition in which inflammatory cells and non-cancerous specialised cells known as myofibroblasts abnormally replicate in the spleen. Patients with IPT may experience symptoms like abdominal pain, fever and weight loss, making it difficult to distinguish from processes like cancer. As a result, diagnosing IPT often requires imaging studies and microscopic examination.

View Article and Find Full Text PDF

Cell therapy: A beacon of hope in the battle against pulmonary fibrosis.

FASEB J

January 2025

Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative.

View Article and Find Full Text PDF

Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.

Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!