Background: Endobronchial path selection is important for the bronchoscopic diagnosis of focal lung lesions. Path selection typically involves mentally reconstructing a three-dimensional path by interpreting a stack of two-dimensional (2D) axial plane CT scan sections. The hypotheses of our study about path selection were as follows: (1) bronchoscopists are inaccurate and overly confident when making endobronchial path selections based on 2D CT scan analysis; and (2) path selection accuracy and confidence improve and become better aligned when bronchoscopists employ path-planning methods based on virtual bronchoscopy (VB).

Methods: Studies of endobronchial path selection comparing three path-planning methods (ie, the standard 2D CT scan analysis and two new VB-based techniques) were performed. The task was to navigate to discrete lesions located between the third-order and fifth-order bronchi of the right upper and middle lobes. Outcome measures were the cumulative accuracy of making four sequential path selection decisions and self-reported confidence (1, least confident; 5, most confident). Both experienced and inexperienced bronchoscopists participated in the studies.

Results: In the first study involving a static paper-based tool, the mean (+/- SD) cumulative accuracy was 14 +/- 3% using 2D CT scan analysis (confidence, 3.4 +/- 1.3) and 49 +/- 15% using a VB-based technique (confidence, 4.2 +/- 1.1; p = 0.0001 across all comparisons). For a second study using an interactive computer-based tool, the mean accuracy was 40 +/- 28% using 2D CT scan analysis (confidence, 3.0 +/- 0.3) and 96 +/- 3% using a dynamic VB-based technique (confidence, 4.6 +/- 0.2). Regardless of the experience level of the bronchoscopist, use of the standard 2D CT scan analysis resulted in poor path selection accuracy and misaligned confidence. Use of the VB-based techniques resulted in considerably higher accuracy and better aligned decision confidence.

Conclusions: Endobronchial path selection is a source of error in the bronchoscopy workflow. The use of VB-based path-planning techniques significantly improves path selection accuracy over use of the standard 2D CT scan section analysis in this simulation format.

Download full-text PDF

Source
http://dx.doi.org/10.1378/chest.07-2540DOI Listing

Publication Analysis

Top Keywords

path selection
40
scan analysis
24
endobronchial path
20
confidence +/-
16
path
12
selection accuracy
12
standard scan
12
selection
10
+/-
9
better aligned
8

Similar Publications

Academic major selection is a critical decision-making process influenced by various socioeconomic factors. This study investigates the behavioral patterns in educational choices, focusing on the impact of urban-rural background and family cultural capital on college students' major selection in China. Employing a mixed-methods approach, we analyzed data from a nationwide sample of 19,772 college students across various institution types.

View Article and Find Full Text PDF

Objectives: Radiotherapy manages pancreatic cancer in various settings; however, the proximity of gastrointestinal (GI) luminal organs-at-risk (OAR) poses challenges to conventional radiotherapy. Proton beam therapy (PBT) may reduce toxicities compared to photon therapy. This consensus statement summarizes PBT's safe and optimal delivery for pancreatic tumors.

View Article and Find Full Text PDF

variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path.

View Article and Find Full Text PDF

CO2-based hydroesterification is an attractive route to produce value added ester compounds, which could replace CO-based hydroesterification processes if sufficient catalytic technologies are developed. One path to CO2-based hydroesterification is through an organoformate intermediate, which is then used in olefin hydroesterification to generate the desirable esters.  This route creates a net CO2-based hydroesterification process using tandem catalytic systems for CO2 hydrogenation to organoformate paired with formate-olefin hydroesterification.

View Article and Find Full Text PDF

Context: In this work, a comparative study on the catalytic conversion of 5-hydroxymethyl furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) on precious Pd(111) and nonprecious Cu(111) was systematically performed. On the basis of the calculated activation energy (E) and reaction energy (E), the optimal energy path for the hydrogenation of HMF (F-CHO) into BHMF (F-CHOH) on Pd(111) is as follows: F-CHO + 2H → F-CHOH + H → F-CHOH; the minimum reaction path on Cu(111) is F-CHO + 2H → F-CHO + H → F-CHOH. On Cu(111), the formation of F-CHOH from F-CHO hydrogenation is the rate-determining step because it has the highest reaction energy barrier and the smallest rate constant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!