Gene expression in the developing diaphragm: significance for congenital diaphragmatic hernia.

Am J Physiol Lung Cell Mol Physiol

University of Alberta, Department of Physiology, Edmonton, Alberta, Canada.

Published: April 2008

Congenital diaphragmatic hernia (CDH) is a frequently occurring birth defect and a source of potentially fatal neonatal respiratory distress. Recently, through the application of detailed karyotyping methods, several CDH-critical regions within the human genome have been identified. These regions typically contain several genes. Here we focused on genes from 15q26, the best-characterized CDH-critical region, as well as FOG2 and GATA4, genes singled out from CDH-critical regions at 8q22-8q23 and 8p23.1, respectively. We tested the hypothesis that these putative CDH-related genes are expressed within the developing diaphragm at the time of the hypothesized initial defect. Our results show that 15q26 contains a cluster of genes that are expressed in the developing rodent diaphragm, consistent with an association between deletions in this region and CDH. We then examined the protein expression pattern of positively identified genes within the developing diaphragm. Two major themes emerged. First, those factors strongly associated with CDH are expressed only in the nonmuscular, mesenchymal component of the diaphragm, supporting the hypothesis that CDH has its origins in a mesenchymal defect. Second, these factors are all coexpressed in the same cells. This suggests that cases of CDH with unique genetic etiology may lead to a common defect in these cells and supports the hypothesis that these factors may be members of a common pathway. This study is the first to provide a detailed examination of how genes associated with CDH are expressed in the developing diaphragm and provides an important foundation for understanding how the deletion of specific genes may contribute to abnormal diaphragm formation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00027.2008DOI Listing

Publication Analysis

Top Keywords

developing diaphragm
16
expressed developing
12
congenital diaphragmatic
8
diaphragmatic hernia
8
cdh-critical regions
8
genes
8
genes expressed
8
associated cdh
8
cdh expressed
8
diaphragm
7

Similar Publications

Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.

View Article and Find Full Text PDF

Background: Cancer cachexia represents a debilitating muscle wasting condition that is highly prevalent in gastrointestinal cancers, including pancreatic ductal adenocarcinoma (PDAC). Cachexia is estimated to contribute to ~30% of cancer-related deaths, with deterioration of respiratory muscles suspected to be a key contributor to cachexia-associated morbidity and mortality. In recent studies, we identified fibrotic remodelling of respiratory accessory muscles as a key feature of human PDAC cachexia.

View Article and Find Full Text PDF

End-user feedback early in product development is important for optimizing multipurpose prevention technologies for HIV and pregnancy prevention. We evaluated the acceptability of the 90-day dapivirine levonorgestrel ring (DPV-LNG ring) used for 14 days compared to a dapivirine-only ring (DVR-200mg) in MTN-030/IPM 041 (n = 23), and when used for 90 days cyclically or continuously in MTN-044/IPM 053/CCN019 (n = 25). We enrolled healthy, non-pregnant, HIV-negative women aged 18-45 in Pittsburgh, PA and Birmingham, AL (MTN-030 only).

View Article and Find Full Text PDF

Cattail (), a wetland plant, is emerging as a sustainable materials resource. While most of the species are proven to be a fiber-yielding crop, exhibits the broadest leaf size (5-30 mm), yields highest amount of fiber (≈190.9 g), and captures maximum CO (≈1270 g).

View Article and Find Full Text PDF

: Point-of-care lung ultrasonography (LUS) represents an accurate diagnostic tool in older patients with respiratory failure. The integration of LUS with ultrasonographic assessment of diaphragm thickness and excursion, right vastus lateralis (RVL) muscle thickness and cross-sectional area (CSA) could provide real-time information on frailty and sarcopenia. The primary aim of this proof-of-concept prospective study was to evaluate clinical correlates of thoracic, diaphragmatic, and muscular ultrasound to characterize the associations between frailty, respiratory failure, and sarcopenia in older patients hospitalized for acute respiratory complaints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!