An optimal tracking neuro-controller for nonlinear dynamic systems.

IEEE Trans Neural Netw

Dept. of Electr. Eng., Seoul Nat. Univ.

Published: October 2012

Multilayer neural networks are used to design an optimal tracking neuro-controller (OTNC) for discrete-time nonlinear dynamic systems with quadratic cost function. The OTNC is made of two controllers: feedforward neuro-controller (FFNC) and feedback neuro-controller (FBNC). The FFNC controls the steady-state output of the plant, while the FBNC controls the transient-state output of the plant. The FFNC is designed using a novel inverse mapping concept by using a neuro-identifier. A generalized backpropagation-through-time (GBTT) algorithm is developed to minimize the general quadratic cost function for the FBNC training. The proposed methodology is useful as an off-line control method where the plant is first identified and then a controller is designed for it. A case study for a typical plant with nonlinear dynamics shows good performance of the proposed OTNC.

Download full-text PDF

Source
http://dx.doi.org/10.1109/72.536307DOI Listing

Publication Analysis

Top Keywords

optimal tracking
8
tracking neuro-controller
8
nonlinear dynamic
8
dynamic systems
8
quadratic cost
8
cost function
8
output plant
8
neuro-controller
4
neuro-controller nonlinear
4
systems multilayer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!