The use of switched capacitors as wide-range, programmable resistive elements in spatially extensive artificial dendritic trees (ADT's) is described. We show that silicon neuro-morphs with ADT's can produce impulse responses that last millions of times longer than the initiating impulse and that dynamical responses are tunable in both shape and duration over a wide range. The switched-capacitor resistors forming a dendritic tree are shown indirectly to have a useful programmable resistance range between 500 KOmega and 1000 GOmega. Experimental results are presented that show variable impulse response functions, tunable frequency selectivity, and rate-invariance of spatiotemporal pattern responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/72.471382 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!