A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling of component failure in neural networks for robustness evaluation: an application to object extraction. | LitMetric

Modeling of component failure in neural networks for robustness evaluation: an application to object extraction.

IEEE Trans Neural Netw

Machine Intelligence Unit, Stat. Inst., Calcutta.

Published: October 2012

The robustness of neural network (NN) based information processing systems with respect to component failure (damaging of nodes/links) is studied. The damaging/component failure process has been modeled as a Poisson process. To choose the instants or moments of damaging, statistical sampling technique is used. The nodes/links to be damaged are determined randomly. As an illustration, the model is implemented and tested on different object extraction algorithms employing Hopfield's associative memory model, Gibbs random fields, and a self-organizing multilayer neural network. The performance of these algorithms is evaluated in terms of percentage of pixels correctly classified under different noisy environments and different degrees and sequences of damaging. The deterioration in the output is seen to be very small even when a large number of nodes/links are damaged.

Download full-text PDF

Source
http://dx.doi.org/10.1109/72.377970DOI Listing

Publication Analysis

Top Keywords

component failure
8
object extraction
8
neural network
8
nodes/links damaged
8
modeling component
4
failure neural
4
neural networks
4
networks robustness
4
robustness evaluation
4
evaluation application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!