Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The robustness of neural network (NN) based information processing systems with respect to component failure (damaging of nodes/links) is studied. The damaging/component failure process has been modeled as a Poisson process. To choose the instants or moments of damaging, statistical sampling technique is used. The nodes/links to be damaged are determined randomly. As an illustration, the model is implemented and tested on different object extraction algorithms employing Hopfield's associative memory model, Gibbs random fields, and a self-organizing multilayer neural network. The performance of these algorithms is evaluated in terms of percentage of pixels correctly classified under different noisy environments and different degrees and sequences of damaging. The deterioration in the output is seen to be very small even when a large number of nodes/links are damaged.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/72.377970 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!