An inductive method of piezoelectric resonance detection is applied to the determination of equivalent circuit parameters of piezoelectric resonators. Using this method one can measure the resonance frequency and mechanical Q-factor of a resonator directly as well as their dependences on the electrical impedance which is connected to the resonator. From the equivalent circuit analysis the changes in resonance frequency and Q-factor due to the piezoelectric loading effects are determined. Measurements on two typical commercial piezoelectric resonators, an AT-cut quartz crystal and a PZT ceramic resonator, are in good agreement with the analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1109/58.251294DOI Listing

Publication Analysis

Top Keywords

equivalent circuit
12
piezoelectric resonators
12
circuit parameters
8
parameters piezoelectric
8
piezoelectric loading
8
resonance frequency
8
piezoelectric
6
method determining
4
determining equivalent
4
resonators analysis
4

Similar Publications

From circuits to lifespan: translating mouse and human timelines with neuroimaging based tractography.

J Neurosci

January 2025

Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.

Animal models are commonly used to investigate developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging.

View Article and Find Full Text PDF

Fast-scan cyclic voltammetry (FSCV) is a widely used electrochemical technique to measure the phasic response of neurotransmitters in the brain. It has the advantage of reducing tissue damage to the brain due to the use of carbon fiber microelectrodes as well as having a high temporal resolution (10 Hz) sufficient to monitor neurotransmitter release in vivo. During the FSCV experiment, the surface of the carbon fiber microelectrode is inevitably changed by the fouling effect.

View Article and Find Full Text PDF

The process of establishing relay protection and automation (RPA) settings for electric power systems (EPSs) entails complex calculations of operating modes. Traditionally, these calculations are based on symmetrical components, which require the building of equivalent circuits of various sequences. This approach can lead to errors both when identifying the operating modes and when modeling the RPA devices.

View Article and Find Full Text PDF

This paper presents the design and performance evaluation of an inductive conductivity sensor with a double tuning impedance matching network to enhance sensitivity and improve linearity. The sensor's equivalent circuit model is analyzed and verified through simulation, and impedance matching is shown to significantly increase the sensor's output signal, particularly at low conductivity measurements. Double tuning impedance matching expands the frequency response range and optimizes power transfer efficiency, achieving a higher power factor across a broader frequency range.

View Article and Find Full Text PDF

Sparse Convolution FPGA Accelerator Based on Multi-Bank Hash Selection.

Micromachines (Basel)

December 2024

Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China.

Reconfigurable processor-based acceleration of deep convolutional neural network (DCNN) algorithms has emerged as a widely adopted technique, with particular attention on sparse neural network acceleration as an active research area. However, many computing devices that claim high computational power still struggle to execute neural network algorithms with optimal efficiency, low latency, and minimal power consumption. Consequently, there remains significant potential for further exploration into improving the efficiency, latency, and power consumption of neural network accelerators across diverse computational scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!