The binuclear cobalt complex [Co(2)(Me(2)dtc)(5)](+) reacts with a range of nitrogen donor ligands L' or L'' to form an equimolar mixture of Co(Me(2)dtc)(3) and the mixed-ligand complexes [Co(Me(2)dtc)(2)(L')(2)](+) or [Co(Me(2)dtc)(2)(L'')](+), where (L')(2) is two monodentate ligands and (L'') is one bidentate ligand. The complexes prepared by this route contain the monodentate ligands L'=1-methyl-imidazole, 1-methyl-5-nitro-imidazole and benzimidazole, all of which coordinate to cobalt through an imidazole nitrogen atom. Symmetrical bidentate ligand complexes contain the bisimidazole L''=2,2'-bis(4,5-dimethylimidazole), the diamine L''=1,2-diaminobenzene and the pyridine donors L''=2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine and 1,10-phenanthroline. Two examples of complexes with unsymmetrical bidentate imidazole-amine donors were prepared in which L''=4-(2-aminoethyl)imidazole (histamine) and 2-aminomethylbenzimidazole. All new complexes were fully characterised, and the X-ray crystal structure of the histamine complex [Co(Me(2)dtc)(2)(hist)]ClO(4) is also reported.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2007.11.016DOI Listing

Publication Analysis

Top Keywords

pyridine donors
8
x-ray crystal
8
crystal structure
8
histamine complex
8
ligands l''
8
monodentate ligands
8
bidentate ligand
8
ligand complexes
8
complexes
6
synthetic routes
4

Similar Publications

2,8-Dithia-5-aza-2,6-pyridinophane () has been used as a receptor unit in the construction of the conjugated redox chemosensor 5-ferrocenylmethyl-2,8-dithia-5-aza-2,6-pyridinophane (). In order to further explore the coordination chemistry of , and comparatively, that of its structural analogue 2,11-dithia-5,8-diaza-2,6-pyridinophane (), featuring two secondary nitrogen atoms in the macrocyclic unit, the crystal structures of the new synthesised complexes [Pb()(ClO)]·½CHCN, [Cu()](ClO)·CHCN and [Cd()(NO)]NO were determined by X-ray diffraction analysis. The electrochemical response of towards the metal ions Cu, Zn, Cd, Hg, and Pb was investigated by cyclic voltammetry (CV) in CHCl/CHCN 0.

View Article and Find Full Text PDF

Three two-dimensional (2D) chiral Ag(I) complexes with formulas [Ag(L)(5-nipa)] (), [Ag(L)(5-nipa)] (), and {[Ag(L)(5-hipa)]·2HO} () were prepared through the reactions of AgO with enantiopure -monodentate N-donors (L/L) and different dicarboxylic acids bearing A (acceptor)-π-- and D (donor)-π--type structural features, where / = (-)/(+)-2-(4'-pyridyl)-4,5-pinene-pyridine, 5-Hnipa = 5-nitroisophthalic acid, and 5-Hhipa = 5-hydroxyisophthalic acid. A study of their nonlinear optical responses reveals that chiral and enantiomeric pairs with the A-π--type dicarboxylic acid ligand simultaneously display second- and third-harmonic generation (SHG and THG) responses, while chiral containing the D-π--type dicarboxylic acid ligand only exhibits a very strong THG response. The THG intensity of is 451 × α-SiO, being about 27 and 24 times larger than those of and , respectively.

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

Metal-organic frameworks generated from oligomeric ligands with functionalized tethers.

Chem Sci

December 2024

Department of Chemistry and Biochemistry, University of California, San Diego La Jolla California 92093 USA

Metal-organic frameworks (MOFs) can be prepared from oligomeric organic ligands to prepare materials referred to as oligoMOFs. Studies of oligoMOFs are relatively limited, with most existing reports focused on fundamental structure-property relationships. In this report, functional groups, such as terminal alkynes and pyridine groups, are installed on the tether between 1,4-benzene dicarboxylic acid (Hbdc) groups of the dimer ligands.

View Article and Find Full Text PDF

Manganese(II) Complexes with Non-Steroidal Anti-Inflammatory Drugs: Structure and Biological Activity.

Int J Mol Sci

December 2024

Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.

Nine manganese(II) complexes with a series of non-steroidal anti-inflammatory drugs (namely sodium diclofenac, diflunisal, flufenamic acid, sodium meclofenamate, mefenamic acid, and tolfenamic acid) were prepared in the presence of diverse nitrogen donors, i.e., pyridine, 1,10-phenanthroline, 2,2'-bipyridine and neocuproine, as co-ligands and were characterized with spectroscopic techniques and single-crystal X-ray crystallography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!