Telomeres acquire distinct heterochromatin characteristics during siRNA-induced RNA interference in mouse cells.

Curr Biol

Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, The People's Republic of China.

Published: February 2008

Telomeres are protective structures present at the ends of linear chromosomes and consist of simple repeating-DNA sequences and specialized proteins [1, 2]. Integrity of the telomeres is important in maintaining genome stability[1-6]. RNA interference(RNAi) involves short double-stranded RNA (21-23 nucleotides long), termed short interference RNA(siRNA), resulting in the downregulation of genes with cognate sequences [7-9]. During transient siRNA-induced RNAi in mouse fibroblast cultures, we found significant reversible changes related to the telomeres. Telomeres acquired distinct heterochromatin features. There were increased bindings of Argonaute-1 (AGO1), telomeric repeat-binding factor 1(TERF1), and heterochromatin protein 1beta (HP1beta) on the telomeres. Histone H3 (lysine 9) was hypermethylated at the telomeres. The chromosome ends also were associated with an unidentified RNA. During RNAi, expression of a transgene inserted adjacent to the telomere was downregulated. In addition, the concentration of a group of heterogeneous high-molecular-weight RNA containing telomeric repeat sequences was increased, and this RNA formed a small number of transient, discrete nuclear foci. Our findings suggest that telomeres participate actively in the siRNA-induced RNAi process. These responses of telomeres to the RNAi process might partially account for the off-target effects of RNAi.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2007.12.059DOI Listing

Publication Analysis

Top Keywords

telomeres
9
distinct heterochromatin
8
sirna-induced rnai
8
rnai process
8
rna
6
rnai
5
telomeres acquire
4
acquire distinct
4
heterochromatin characteristics
4
characteristics sirna-induced
4

Similar Publications

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) has been reported to confer an increased risk of natural premature death. Telomere erosion caused by oxidative stress is a common consequence in age-related diseases. However, whether telomere length (TL) and oxidative indicators are significantly changed in ASD patients compared with controls remains controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!