The structure and composition evolution of polyvinyl alcohol (PVA) fibers during the fabrication of activated carbon fibers (ACF) by a newly developed method were systematically elucidated. The pore structure of the fibers was significantly influenced by the carbonization and activation conditions. The elemental composition and chemical structure evolution of the fibers during the heat treatment processes were evaluated by elemental analysis, Fourier transform infrared spectrophotometry (FTIR), and X-ray photoelectron spectroscopy (XPS). Crystal structure evolution of the fibers during the heat treatment processes was elucidated by X-ray diffraction (XRD) analysis. Based on these understandings, the process conditions were optimized using an L(9)(3)(4) orthogonal array design matrix. Appropriate process parameters for the fabrication of PVA-ACFs were established as carbonizing the dehydrated fiber at 300 degrees C for 60 min, and then lifting the temperature to 900 degrees C with a heating speed of 10 degrees C/min in an inert atmosphere, thereafter keeping the fiber at 900 degrees C for 60 min in an oxidizing atmosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2008.01.012DOI Listing

Publication Analysis

Top Keywords

structure evolution
12
activated carbon
8
carbon fibers
8
evolution fibers
8
fibers heat
8
heat treatment
8
treatment processes
8
degrees min
8
900 degrees
8
fibers
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!