Currently, a combination of technologies is typically required to assess the malignancy of cancer cells. These methods often lack the specificity and sensitivity necessary for early, accurate diagnosis. Here we demonstrate using clinical samples the application of laser trapping Raman spectroscopy as a novel approach that provides intrinsic biochemical markers for the noninvasive detection of individual cancer cells. The Raman spectra of live, hematopoietic cells provide reliable molecular fingerprints that reflect their biochemical composition and biology. Populations of normal T and B lymphocytes from four healthy individuals and cells from three leukemia patients were analyzed, and multiple intrinsic Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for cancer cell identification. A combination of two multivariate statistical methods, principal component analysis (PCA) and linear discriminant analysis (LDA), was used to confirm the significance of these markers for identifying cancer cells and classifying the data. The results indicate that, on average, 95% of the normal cells and 90% of the patient cells were accurately classified into their respective cell types. We also provide evidence that these markers are unique to cancer cells and not purely a function of differences in their cellular activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac7022348 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
It has been well accumulated that G-quadruplex (G4-DNA) has great anticancer relevance, and various heterocyclic moieties have been synthesized and examined as potent G4-DNA binders with promising anticancer activity. Here, we have synthesized a series of naphthalimide-triazole-coumarin conjugates by substituting various amines and further examine their anticancer activity against 60 human cancer cell lines at 10 μM. One and five dose concentration results reveal low values of MG-MID GI for compounds including (3.
View Article and Find Full Text PDFDNA Cell Biol
January 2025
Department of Anesthesiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China.
Lung cancer represents a significant global health burden, with non-small cell lung cancer (NSCLC) being the most common subtype. The current standard of care for NSCLC has limited efficacy, highlighting the necessity for innovative treatment options. Lidocaine, traditionally recognized as a local anesthetic, has emerged as a compound with potential antitumor and anti-inflammatory capabilities.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
Objective: Oxidative stress prompts breast cancer cells to adapt by raising the lethal threshold and enhancing the antioxidant mechanism, thereby enabling survival and continuous proliferation that facilitates tumor progression. Nrf2 and 8-OHdG are indicative of oxidative stress activity and impact the progression of breast cancer. We aimed to analyze the expression of Nrf2 and 8-OHdG in various T stages of breast cancer in our hospital.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia.
Objective: Programmed cell death-1 (PD-1, encoded by PDCD1) regulatory network participates in glioblastoma multiforme development. However, such a network in trastuzumab-resistant human epidermal growth factor receptor 2-positive (HER2+) breast cancer remains to be determined. Accordingly, this study was aimed to explore the PD-1 regulatory network responsible for the resistance of breast cancer cells to trastuzumab through a bioinformatics approach.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research. Mustansiriyah University, Baghdad, Iraq.
Background: The use of bacterial vaccines as a potential Bacterial-Based Cancer Therapy (BBCT) presents an innovative approach, transforming these vaccines into multifunctional tools capable of serving dual roles in medicine.
Materials And Methods: This study aimed to conduct in vitro, immunity-independent experiments to investigate the anticancer properties of vaccine-derived bacterial toxoids on various cancer cell lines. Six concentrations of the DTP vaccine (5 x 10-4, 25 x 10-5, 125 x 10-6, 625 x 10-7, 312 x 10-7, and 15 x 10-6 µg/ml) were tested on two cancer cell lines (SKG and HCAM) and a normal Rat Embryonic Fibroblast (REF) cell line.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!