Quantum phase is not directly observable and is usually determined by interferometric methods. We present a method to map complete electron wave functions, including internal quantum phase information, from measured single-state probability densities. We harness the mathematical discovery of drum-like manifolds bearing different shapes but identical resonances, and construct quantum isospectral nanostructures with matching electronic structure but divergent physical structure. Quantum measurement (scanning tunneling microscopy) of these "quantum drums"-degenerate two-dimensional electron states on the copper(111) surface confined by individually positioned carbon monoxide molecules-reveals that isospectrality provides an extra topological degree of freedom enabling robust quantum state transplantation and phase extraction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1151490 | DOI Listing |
Phys Rev Lett
December 2024
School of Physics, Beihang University, Haidian District, Beijing 100191, China.
Massive Dirac fermions, which are essential for realizing novel topological phenomena, are expected to be generated from massless Dirac fermions by breaking the related symmetry, such as time-reversal symmetry in topological insulators or crystal symmetry in topological crystalline insulators. Here, we report scanning tunneling microscopy and angle-resolved photoemission spectroscopy studies of α-Bi_{4}I_{4}, which reveals the realization of massive Dirac fermions in the (100) surface states without breaking the time-reversal symmetry. Combined with first-principles calculations, our experimental results indicate that the spontaneous symmetry breaking engenders two nondegenerate edge states at the opposite sides of monolayer Bi_{4}I_{4} after the structural phase transition, imparting mass to the Dirac fermions after taking the interlayer coupling into account.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA.
A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
A search for violation of the charge-parity (CP) symmetry in the D^{+}→K^{-}K^{+}π^{+} decay is presented, with proton-proton collision data corresponding to an integrated luminosity of 5.4 fb^{-1}, collected at a center-of-mass energy of 13 TeV with the LHCb detector. A novel model-independent technique is used to compare the D^{+} and D^{-} phase-space distributions, with instrumental asymmetries subtracted using the D_{s}^{+}→K^{-}K^{+}π^{+} decay as a control channel.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Cornell University, Ithaca, New York 14853, USA.
Developing high-precision models of the nuclear force and propagating the associated uncertainties in quantum many-body calculations of nuclei and nuclear matter remain key challenges for ab initio nuclear theory. In this Letter, we demonstrate that generative machine learning models can construct novel instances of the nucleon-nucleon interaction when trained on existing potentials from the literature. In particular, we train the generative model on nucleon-nucleon potentials derived at second and third order in chiral effective field theory and at three different choices of the resolution scale.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria.
The efficient readout of the relevant information is pivotal for quantum simulation experiments. Often only single observables are accessed by performing standard projective measurements. In this work, we implement an atomic beam splitter by controlled outcoupling that enables a generalized measurement scheme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!