Complex corticocancellous skeletal sites such as the vertebra or proximal femur are connected networks of bone capable of transferring mechanical loads. Characterizing these structures as networks may allow us to quantify the load transferring behavior of the emergent system as a function of the connected cortical and trabecular components. By defining the relationship between certain physical bone traits and mechanical load transfer pathways, a clearer picture of the genetic determinants of skeletal fragility can be developed. We tested the hypothesis that the measures provided by network percolation theory will reveal that different combinations of cortical, trabecular, and compositional traits lead to significantly different load transfer pathways within the vertebral bodies among inbred mouse strains. Gross morphologic, micro-architectural, and compositional traits of L5 vertebrae from 15 week old A/J (A), C57BL6/J (B6), and C3H/HeJ (C3H) inbred mice (n=10/strain) were determined using micro-computed tomography. Measures included total cross-sectional area, bone volume fraction, trabecular number, thickness, spacing, cortical area, and tissue mineral density. Two-dimensional coronal sections were converted to network graphs with the cortical shell considered as one highly connected node. Percolation parameters including correlation length (average number of connected nodes between superior and inferior surfaces), chemical length (minimum number of connected nodes between surfaces), and backbone mass (strut number) were measured. Analysis of the topology of the connected bone networks showed that A and B6 mice transfer load through trabecular pathways in the middle of the vertebral body in addition to the cortical shell. C3H mice transfer load primarily through the highly mineralized cortical shell. Thus, the measures provided by percolation theory provide a quantitative approach to study how different combinations of cortical and trabecular traits lead to mechanically functional structures. The data further emphasize the interdependent nature of these physical bone traits suggesting similar genetic variants may affect both trabecular and cortical bone. Therefore, developing a network approach to study corticocancellous architecture during growth should further our understanding of the biological basis of skeletal fragility and, thus, provide novel engineering approaches to studying the genetic basis of fracture risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650241 | PMC |
http://dx.doi.org/10.1016/j.bone.2007.12.009 | DOI Listing |
Heliyon
January 2025
Faculty of Mechanical Technology and Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, 76100, Malaysia.
This paper explores the electrical conductivity interphase of Ag/Epoxy composite using modified McLachlan theory and 3D finite element composite model through experimental verification. The model characteristic presents conductivity as a dynamic function influenced by particle content, particle electrical properties, electrical properties transition, and an exponent. This model was meticulously crafted, considering the intricate interplay between the polymer matrix and silver particles, the tunnelling distance between adjacent silver particles, and the interphase regions around particles.
View Article and Find Full Text PDFRecent Pat Nanotechnol
January 2025
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands.
The increase in computational power demand led by the development of Artificial Intelligence is rapidly becoming unsustainable. New paradigms of computation, which potentially differ from digital computation, together with novel hardware architecture and devices, are anticipated to reduce the exorbitant energy demand for data-processing tasks. Memristive systems with resistive switching behavior are under intense research, given their prominent role in the fabrication of memory devices that promise the desired hardware revolution in our intensive data-driven era.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanics and Engineering, Liaoning Technical University, Fuxin, 123000, China.
Uniaxial compression experiments were conducted on coal rock utilizing a computed tomography (CT) scanning system for real-time monitoring to explain the issue of gas volume significantly exceeding reservoir capacity during coal and gas outbursts. A percolation factor a which can make a significant contribution to the research on premonitory information of gas outbursts is introduced to determine whether percolation occurs in coal rock, and supports the outburst percolation theory. It was found that percolation probability and correlation length increase with greater porosity, and that the number of pore clusters decreases as porosity increases.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390123, Chile.
In this work, we study the magnetocaloric effect (MCE) in a working substance corresponding to a square lattice of spins with possible orientations, known as the "-state clock model". When the -state clock model has Q≥5 possible configurations, it presents the famous Berezinskii-Kosterlitz-Thouless (BKT) phase associated with vortex states. We calculate the thermodynamic quantities using Monte Carlo simulations for even numbers, ranging from Q=2 to Q=8 spin orientations per site in a lattice.
View Article and Find Full Text PDFChem Mater
January 2025
Department of Materials Science and Engineering, University of California, Berkeley, California 94704, United States.
Multivalent-ion batteries offer an alternative to Li-based technologies, with the potential for greater sustainability, improved safety, and higher energy density, primarily due to their rechargeable system featuring a passivating metal anode. Although a system based on the Ca/Ca couple is particularly attractive given the low electrochemical plating potential of Ca, the remaining challenge for a viable rechargeable Ca battery is to identify Ca cathodes with fast ion transport. In this work, a high-throughput computational pipeline is adapted to (1) discover novel Ca cathodes in a largely unexplored space of "empty intercalation hosts" and (2) develop material design rules for Ca-ion mobility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!