The need for detailed biophysical description of cationic lipid membranes, which are commonly used as gene transfection vectors, led us to study the properties of mixed cationic/zwitterionic lipid bilayers. Fluorescence solvent relaxation measurements of 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan) incorporated in a membrane consisting of cationic dimyristoyltrimethylammoniumpropane (DMTAP) and zwitterionic dimyristoylphosphatidylcholine (DMPC) were performed. The obtained results are compared with a recently measured system consisting of dioleoyltrimethylammoniumpropane (DOTAP) and dioleoylphosphatidylcholine (DOPC) (Jurkiewicz et al. Langmuir 22:8741-8749, 2006). The similar nonmonotonic dependence of the relaxation kinetics on cationic lipid content in the membrane was present for both systems. While the slowest solvent relaxation have been observed for 30 mol% of DOTAP in the DOPC bilayer (Jurkiewicz et al. Langmuir 22:8741-8749, 2006), for DMPC/DMTAP system it was found at 45 mol% of DMTAP, which agrees with the literature. Both membranes increased their hydration upon increased cationic lipid content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-008-0321-6 | DOI Listing |
J Phys Chem B
January 2025
UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus of Mumbai University, Santacruz (E), Mumbai 400098, India.
Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFSoft Matter
January 2025
Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
The adsorption and aggregation of amphiphiles at different solvent interfaces are of great scientific and technological importance. In this study, interfacial tension measurements of surface-active compounds-ionic liquid 2-dodecyl-2,2dimethylethanolammonium bromide (12Cho.Br) and cationic surfactant cetyltrimethylammonium bromide (CTAB)-were conducted both in the absence and presence of ciprofloxacin (CIP).
View Article and Find Full Text PDFSci Rep
December 2024
Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.
Nat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!