Rapid and accurate detection of genetic mutations based on nanotechnology would provide substantial advances in detection of polycystic kidney disease (PKD), a disease whose current methods of detection are cumbersome due to the large size and duplication of the mutated gene. In this study, a nanotechnology-based DNA assay was developed for detection of SNPs (single nucleotide polymorphisms) in a feline autosomal dominant PKD (ADPKD) model which can readily be adapted to diagnosis of human ADPKD type 1. Europium and terbium phosphors were doped into gadolinium crystal hosts with a magnetic core, providing stable luminescence and the possibility of magnetic manipulations in a solution-based assay. A hybridization-in-solution DNA assay was optimized for feline PKD gene SNP detection using genomic DNA extracted from feline kidney tissue and blood. This assay showed a substantial differentiation between PKD and control specimens. The nanotechnology-based DNA assay is attractive from the viewpoint of rapid availability, simple methodology, and cost reduction for clinical use to detect mutations involved in human ADPKD and other genetic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-008-1892-4 | DOI Listing |
Probl Radiac Med Radiobiol
December 2024
State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.
Objective: to investigate the reciprocal impact on the genome of malignant and normal human peripheral bloodlymphocytes under their co-culture and the possibility to modify the effects by astaxanthin.
Methods: Separate and joint/separate culturing of peripheral blood lymphocytes (PBL) of the chronic lymphocyticleukemia (CLL) patients (n = 6) and conditionally healthy individuals (n = 6), Comet assay method, fluorescencemicroscopy with automated software for the analysis of results, statistical methods.
Results: Both direct and rescue tumour-induced bystander effects were observed under the joint/separate culturing of blood lymphocytes of conditionally healthy individuals (the bystander cells) and blood cells from CLL patients(the inducer cells).
Probl Radiac Med Radiobiol
December 2024
Educational and Scientific Center «Institute of Biology and Medicine» of the Taras Shevchenko Kyiv National University, 64/13 Volodymyrska Str., Kyiv, 01601, Ukraine.
Objective: to investigate changes in DNA methylation in bystander and inducer cells during the manifestation ofdirect and rescue bystander effects.
Methods: Separate and co-cultivation of peripheral blood lymphocytes (PBL) of 10 conditionally healthy individuals; γ-quantum irradiation (IBL-237C emitter); modified comet electrophoresis method (Comet assay) under neutralconditions using the methylation-sensitive restriction enzyme HpaII; fluorescence microscopy with an automatedcomputer software system for analyzing the results; statistical methods.
Results: The level of DNA methylation in PBL was quantitatively assessed using DNA migration parameters inagarose gel: the length of the comet tail (in μm), the percentage of DNA in the tail part of the comet, and TailMoment (TM), which simultaneously takes into account both the amount of DNA in the tail part of the comet andthe length of the tail.
J Cancer Res Clin Oncol
December 2024
Department of Respiratory Medicine, The Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
Purpose: This study aims to investigate the biological roles and molecular mechanisms of Cathepsin G (CTSG) in the progression of non-small cell lung cancer (NSCLC).
Methods: Western blotting and immunohistochemistry analyses of clinical samples were performed to determine the expression levels of CTSG in patients with NSCLC. Bioinformatic analysis of clinical datasets was conducted to evaluate the correlation between CTSG and lymph node metastasis, tumor stage, and immune cell infiltration.
Protein Sci
January 2025
Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.
The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.
View Article and Find Full Text PDFParasitol Res
December 2024
Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
Toxoplasmosis is a foodborne zoonotic parasitic disease caused by Toxoplasma gondii, which seriously threatens to human health and causes economic losses. At present, there is no effective vaccine strategy for the prevention and control of toxoplasmosis. T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!