Haematopoietic stem cell release is regulated by circadian oscillations.

Nature

Mount Sinai School of Medicine, Department of Medicine and Department of Gene and Cell Medicine, New York, New York 10029, USA.

Published: March 2008

Haematopoietic stem cells (HSCs) circulate in the bloodstream under steady-state conditions, but the mechanisms controlling their physiological trafficking are unknown. Here we show that circulating HSCs and their progenitors exhibit robust circadian fluctuations, peaking 5 h after the initiation of light and reaching a nadir 5 h after darkness. Circadian oscillations are markedly altered when mice are subjected to continuous light or to a 'jet lag' (defined as a shift of 12 h). Circulating HSCs and their progenitors fluctuate in antiphase with the expression of the chemokine CXCL12 in the bone marrow microenvironment. The cyclical release of HSCs and expression of Cxcl12 are regulated by core genes of the molecular clock through circadian noradrenaline secretion by the sympathetic nervous system. These adrenergic signals are locally delivered by nerves in the bone marrow, transmitted to stromal cells by the beta(3)-adrenergic receptor, leading to a decreased nuclear content of Sp1 transcription factor and the rapid downregulation of Cxcl12. These data indicate that a circadian, neurally driven release of HSC during the animal's resting period may promote the regeneration of the stem cell niche and possibly other tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature06685DOI Listing

Publication Analysis

Top Keywords

haematopoietic stem
8
stem cell
8
circadian oscillations
8
circulating hscs
8
hscs progenitors
8
bone marrow
8
circadian
5
cell release
4
release regulated
4
regulated circadian
4

Similar Publications

Apolipoprotein E (APOE) has multiple functions in metabolism and immunoregulation. Its common germline variants APOE2, APOE3 and APOE4 give rise to three functionally distinct gene products. Previous studies reported yin-yang roles of APOE2 and APOE4 in immunological processes, but their effects in hematopoietic stem cell transplantation (HSCT) have never been studied.

View Article and Find Full Text PDF

Background: Post-transplantation cyclophosphamide (PTCy) and anti-thymocyte globulin (ATG) are common prophylactic strategies for graft-versus-host disease (GVHD) after haploidentical hematopoietic stem cell transplantation (haplo-HSCT). Interleukin (IL)-6 is a surrogate marker for cytokine release syndrome (CRS) and acute GVHD.

Method: The clinical outcomes and complications of haplo-HSCT with PTCy plus ATG versus PTCy monotherapy were compared according to serum IL-6 levels at Chungnam National University Hospital (Daejeon, South Korea) from January 2019 to February 2023.

View Article and Find Full Text PDF

In women after hematopoietic stem cell transplantation (HSCT), complications associated with the original disease and therapies used both before and after transplantation often occur, which significantly affects their quality of life. The most common gynaecological complications include secondary cancers, premature ovarian insufficiency (POI), infertility and chronic graft-versus-host disease (cGVHD). Cervical cancer is the most common secondary genital cancer in patients after HSCT.

View Article and Find Full Text PDF

Elevated circulating levels of calprotectin (CAL), the S100A8/A9 heterodimer, are biomarkers of severe systemic inflammation. Here, we investigate the effects of CAL on early human hematopoiesis. CAL demonstrates limited impact on gene expression in stem and progenitor cells, in contrast with interleukin-6 (IL6), which promotes the expression of the and genes in hematopoietic progenitors and the generation of monocytes that release CAL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!