Background And Aims: Basic information about the root and root nodule structure of leguminous crop plants is incomplete, with many aspects remaining unresolved. Peanut (Arachis hypogaea) forms root nodules in a unique process. Structures of various peanut root types were studied with emphasis on insufficiently characterized lateral roots, changes in roots during their ontogenesis and root modification by nodule formation.
Methods: Peanut plants were grown in the field, in vermiculite or in filter paper. The taproot, first-order and second-order lateral roots and root nodules were analysed using bright-field and fluorescence microscopy with hand sections and resin sections.
Key Results: Three root categories were recognized. The primary seminal root was thick, exhibiting early and intensive secondary thickening mainly on its base. It was tetrarch and contained broad pith. First-order lateral roots were long and thin, with limited secondary thickening; they contained no pith. Particularly different were second- and higher-order lateral roots, which were anatomically simple and thin, with little or no secondary growth. Unusual wall ingrowths were visible in the cells of the central part of the cortex in the first-order and second-order lateral roots. The nodule body was formed at the junction of the primary and lateral roots by the activity of proliferating cells derived originally from the pericycle.
Conclusions: Two morphologically and anatomically distinct types of lateral roots were recognized: long, first-order lateral roots, forming the skeleton of the root system, and thin and short second- and higher-order lateral roots, with an incomplete second state of endodermal development, which might be classified as peanut 'feeder roots'. Formation of root nodules at the base of the lateral roots was the result of proliferating cell divisions derived originally from the pericycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710188 | PMC |
http://dx.doi.org/10.1093/aob/mcm322 | DOI Listing |
Cureus
December 2024
Department of Dental Sciences, Faculty of Medicine, University of Liege, Liege, BEL.
Background Fracture of nickel-titanium (Ni-Ti) instruments in root canals is commonly associated with compromised outcomes in endodontic treatment. There is no single, universally accepted approach for managing this complication. The objective of this study is to evaluate the effectiveness of an Nd: YAP laser-assisted protocol in removing fractured Ni-Ti files in teeth with minimal root curvature (less than 15 degrees).
View Article and Find Full Text PDFNat Commun
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China.
While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of GmERF13 function increases nodule density, while its overexpression suppresses nodulation.
View Article and Find Full Text PDFCureus
December 2024
Oral and Maxillofacial Radiology, Oromax Imaging, Kolkata, IND.
Aim: This study aims to analyze the root canal configuration system of mandibular first premolars in the Bengali subpopulation using cone-beam computed tomography (CBCT).
Materials And Methods: Based on Vertucci's classification, the root canal morphology of 100 randomly selected mandibular first premolars in 56 males and 44 females from the Bengali subpopulation of West Bengal was assessed in vitro. The location of the apical foramen, lateral canal, C-shaped canal, types of canal orifice cross-sections, minor constriction diameter, tooth length, and root length were noted.
Bull Math Biol
January 2025
Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand.
The evolutionary relationships between species are typically represented in the biological literature by rooted phylogenetic trees. However, a tree fails to capture ancestral reticulate processes, such as the formation of hybrid species or lateral gene transfer events between lineages, and so the history of life is more accurately described by a rooted phylogenetic network. Nevertheless, phylogenetic networks may be complex and difficult to interpret, so biologists sometimes prefer a tree that summarises the central tree-like trend of evolution.
View Article and Find Full Text PDFNat Plants
January 2025
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
Nanoparticle-mediated delivery of nucleic acids and proteins into intact plants has the potential to modify metabolic pathways and confer desirable traits in crops. Here we show that layered double hydroxide (LDH) nanosheets coated with lysozyme are actively taken up into the root tip, root hairs and lateral root junctions by endocytosis, and translocate via an active membrane trafficking pathway in plants. Lysozyme coating enhanced nanosheet uptake by (1) loosening the plant cell wall and (2) stimulating the expression of endocytosis and other membrane trafficking genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!