Voltage-gated potassium channel (Kv) subunits expressed in the rat cochlear nucleus.

J Histochem Cytochem

Department of Physiology, Medical and Health Science Centre, University of Debrecen, PO Box 22, H-4012 Debrecen, Hungary.

Published: May 2008

Because the neuronal membrane properties and firing characteristics are crucially affected by the depolarization-activated K(+) channel (Kv) subunits, data about the Kv distribution may provide useful information regarding the functionality of the neurons situated in the cochlear nucleus (CN). Using immunohistochemistry in free-floating slices, the distribution of seven Kv subunits was described in the rat CN. Positive labeling was observed for Kv1.1, 1.2, 1.6, 3.1, 3.4, 4.2, and 4.3 subunits. Giant and octopus neurons showed particularly strong immunopositivity for Kv3.1; octopus neurons showed intense Kv1.1- and 1.2-specific reactions also. In the latter case, an age-dependent change of the expression pattern was also documented; although both young and older animals produced definite labeling for Kv1.2, the intensity of the reaction increased in older animals and was accompanied with the translocation of the Kv1.2 subunits to the cell surface membrane. The granule cell layer exhibited strong Kv4.2-specific immunopositivity, and markedly Kv4.2-positive glomerular synapses were also seen. It was found that neither giant nor pyramidal cells were uniform in terms of their Kv expression patterns. Our data provide new information about the Kv expression of the CN and also suggest potential functional heterogeneity of the giant and pyramidal cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2324191PMC
http://dx.doi.org/10.1369/jhc.2008.950303DOI Listing

Publication Analysis

Top Keywords

channel subunits
8
cochlear nucleus
8
octopus neurons
8
older animals
8
giant pyramidal
8
pyramidal cells
8
subunits
5
voltage-gated potassium
4
potassium channel
4
subunits expressed
4

Similar Publications

Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex.

J Biol Chem

January 2025

Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903. Electronic address:

The mitochondrial Ca uniporter is the Ca channel responsible for mitochondrial Ca uptake. It plays crucial physiological roles in regulating oxidative phosphorylation, intracellular Ca signaling, and cell death. The uniporter contains the pore-forming MCU subunit, the auxiliary EMRE protein, and the regulatory MICU1 subunit, which blocks the MCU pore under resting cellular Ca concentrations.

View Article and Find Full Text PDF

Pulmonary hypertension associated with lung diseases and/or hypoxia is classified as group 3 in the clinical classification of pulmonary hypertension. The efficacy of existing selective pulmonary vasodilators for group 3 pulmonary hypertension is still unknown, and it is currently associated with a poor prognosis. The mechanisms by which pulmonary hypertension occurs include hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, a decrease in pulmonary vascular beds, endothelial dysfunction, endothelial-to-mesenchymal transition, mitochondrial dysfunction, oxidative stress, hypoxia-inducible factors (HIFs), inflammation, microRNA, and genetic predisposition.

View Article and Find Full Text PDF

Corynosoma pseudohamanni Zdzitowiecki, 1984 (Polymorphidae) was described from the intestinal tract of 5 species of seals including the type and main host, the Weddell seal Leptonycotes weddellii (Lesson) in the South Shetlands, West Antarctica. Notothenia coriiceps was the primary paratenic host of 14 fish hosts reported in the original description. We describe excysted juveniles from the body cavity of the major paratenic host, Notothenia coriiceps Richardson collected off Galindez Island, Argentine Islands, West Antarctica for the first time.

View Article and Find Full Text PDF

The nicotinamide adenine dinucleotide phosphate (NADPH) dehydrogenase (NDH) complex is crucial for photosynthetic cyclic electron flow and respiration, transferring electrons from ferredoxin to plastoquinone while transporting H across the chloroplast membrane. This process boosts adenosine triphosphate production, regardless of NADPH levels. In flowering plants, NDH forms a supercomplex with photosystem I, enhancing its stability under high light.

View Article and Find Full Text PDF

Objective: C-X-C motif chemokine receptor 2 (CXCR2) plays a crucial role in inflammation and immunity, and the involvement of chemokine receptors in the tumor microenvironment is extensively documented. However, the impact of CXCR2 deficiency on the complete transcriptome, including mRNA and ncRNAs, in tumor cells remains unclear.

Methods: In this study, we aimed to identify differentially expressed (DE) messenger RNA (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in CXCR2 knockout HeLa cells through transcriptome sequencing and to construct regulatory networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!