A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Volterra models and three-layer perceptrons. | LitMetric

Volterra models and three-layer perceptrons.

IEEE Trans Neural Netw

Dept. of Biomed. Eng., Univ. of Southern California, Los Angeles, CA.

Published: October 2012

This paper proposes the use of a class of feedforward artificial neural networks with polynomial activation functions (distinct for each hidden unit) for practical modeling of high-order Volterra systems. Discrete-time Volterra models (DVMs) are often used in the study of nonlinear physical and physiological systems using stimulus-response data. However, their practical use has been hindered by computational limitations that confine them to low-order nonlinearities (i.e., only estimation of low-order kernels is practically feasible). Since three-layer perceptrons (TLPs) can be used to represent input-output nonlinear mappings of arbitrary order, this paper explores the basic relations between DVMs and TLPs with tapped-delay inputs in the context of nonlinear system modeling. A variant of TLP with polynomial activation functions-termed "separable Volterra networks" (SVNs)-is found particularly useful in deriving explicit relations with DVM and in obtaining practicable models of highly nonlinear systems from stimulus-response data. The conditions under which the two approaches yield equivalent representations of the input-output relation are explored, and the feasibility of DVM estimation via equivalent SVN training using backpropagation is demonstrated by computer-simulated examples and compared with results from the Laguerre expansion technique (LET). The use of SVN models allows practicable modeling of high-order nonlinear systems, thus removing the main practical limitation of the DVM approach.

Download full-text PDF

Source
http://dx.doi.org/10.1109/72.641465DOI Listing

Publication Analysis

Top Keywords

volterra models
8
three-layer perceptrons
8
polynomial activation
8
modeling high-order
8
systems stimulus-response
8
stimulus-response data
8
nonlinear systems
8
nonlinear
5
volterra
4
models three-layer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!