Brain registration to a stereotaxic atlas is an effective way to report anatomic locations of interest and to perform anatomic quantification. However, existing stereotaxic atlases lack comprehensive coordinate information about white matter structures. In this paper, white matter-specific atlases in stereotaxic coordinates are introduced. As a reference template, the widely used ICBM-152 was used. The atlas contains fiber orientation maps and hand-segmented white matter parcellation maps based on diffusion tensor imaging (DTI). Registration accuracy by linear and non-linear transformation was measured, and automated template-based white matter parcellation was tested. The results showed a high correlation between the manual ROI-based and the automated approaches for normal adult populations. The atlases are freely available and believed to be a useful resource as a target template and for automated parcellation methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2478641PMC
http://dx.doi.org/10.1016/j.neuroimage.2007.12.035DOI Listing

Publication Analysis

Top Keywords

white matter
16
based diffusion
8
diffusion tensor
8
tensor imaging
8
matter parcellation
8
stereotaxic
4
stereotaxic white
4
matter
4
matter atlas
4
atlas based
4

Similar Publications

Chitinase 3-like protein 1 (CHI3L1) is emerging as a promising biomarker for assessing intracranial lesion burden and predicting prognosis in traumatic brain injury (TBI) patients. Following experimental TBI, Chi3l1 transcripts were detected in reactive astrocytes located within the pericontusional cortex. However, the cellular sources of CHI3L1 in response to hemorrhagic contusions in human brain remain unidentified.

View Article and Find Full Text PDF

Purpose: Magnetic Resonance Imaging based brain segmentation and volumetry has become an important tool in clinical routine and research. However the impact of the used hardware is only barely investigated. This study aims to assess the influence of scanner manufacturer, field strength and head-coil on volumetry results.

View Article and Find Full Text PDF

Combination of structural and functional brain connectivity methods provides a more complete and effective avenue into the investigation of cortical network responses to traumatic brain injury (TBI) and subtle alterations in brain connectivity associated with TBI. Structural connectivity (SC) can be measured using diffusion tensor imaging to evaluate white matter integrity, whereas functional connectivity (FC) can be studied by examining functional correlations within or between functional networks. In this study, the alterations of SC and FC were assessed for TBI patients, with and without chronic symptoms (TBIcs/TBIncs), compared with a healthy control group (CG).

View Article and Find Full Text PDF

Objectives: To explore interrelations between cognitive, physical, affective, and daily functioning, quality of life and white matter hyperintensities (WMH) in a geriatric memory clinic sample.

Method: Participants received brain imaging, comprehensive geriatric assessment and neuropsychological evaluation including measurements of cognitive, physical, affective, and daily functioning and health-related quality of life. Data was analyzed using multiple linear regressions and network analysis using (moderated) mixed graphical models.

View Article and Find Full Text PDF

Background: Electroconvulsive therapy (ECT) is a well-established and effective treatment for severe depression and other conditions. Though ECT induces a generalized seizure, it is unclear why seizures are therapeutic. This study analyzed relationships between pre-treatment brain morphology, stimulation dose, and seizure duration to better understand ECT-induced seizures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!