MAPK Pmk1p is the central element of a cascade involved in the maintenance of cell integrity and other functions in Schizosaccharomyces pombe. Pmk1p becomes activated by multiple stressing situations and also during cell separation. GTPase Rho2p acts upstream of the protein kinase C homolog Pck2p to activate the Pmk1 signalling pathway through direct interaction with MAPKKK Mkh1p. In this work we analyzed the functional significance of both Rho2p and Pck2p in the transduction of various stress signals by the cell integrity pathway. The results indicate that basal Pmk1p activity can be positively regulated by alternative mechanisms which are independent on the control by Rho2p and/or Pck2p. Unexpectedly, Pck1p, another protein kinase C homolog, negatively modulates Pmk1p basal activity by an unknown mechanism. Moreover, different elements appear to regulate the stress-induced activation of Pmk1p depending on the nature of the triggering stimuli. Whereas Pmk1p activation induced by hyper- or hypotonic stresses is channeled through Rho2p-Pck2p, other stressors, like glucose deprivation or cell wall disturbance, are transduced via other pathways in addition to that of Rho2p-Pck2p. On the contrary, Pmk1p activation observed during cell separation or after treatment with hydrogen peroxide does not involve Rho2p-Pck2p. Finally, Pck2p function is critical to maintain a Pmk1p basal activity that allows Pmk1p activation induced by heat stress. These data demonstrate the existence of a complex signalling network modulating Pmk1p activation in response to a variety of stresses in fission yeast.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2007.12.017 | DOI Listing |
Elife
October 2020
Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.
Microbiologyopen
October 2013
Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/Zacarías González s/n., Salamanca, Spain.
Sensing stressful conditions that affect the cell wall reorganization is important for yeast survival. Here, we studied two proteins SpWsc1p and SpMtl2p with structural features indicative of plasma membrane-associated cell wall sensors. We found that Mtl2p and Wsc1p act by turning on the Rho1p GTPase.
View Article and Find Full Text PDFFungal Genet Biol
September 2009
IBWF e.V., Institute for Biotechnology and Drug Research, Kaiserslautern, Germany.
Mycosphaerella graminicola is a dimorphic fungus which causes Septoria tritici leaf blotch. This report describes the examination of the role of several components of the Pmk1p/Fus3p mitogen-activated protein kinase (MAPK) signalling pathway in the development of this species. The genes encoding the MAPK kinase kinase MgSte11p and the MAPK kinase MgSte7p were found to be indispensible for pathogenicity while the deletion of the gene encoding the proposed scaffold protein MgSte50p led to a reduction in virulence.
View Article and Find Full Text PDFMol Biol Cell
January 2009
Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
The Schizosaccharomyces pombe exchange factor Rgf1p specifically regulates Rho1p during polarized growth. Rgf1p activates the beta-glucan synthase (GS) complex containing the catalytic subunit Bgs4p and is involved in the activation of growth at the second end, a transition that requires actin reorganization. In this work, we investigated Rgf1p signaling and observed that Rgf1p acted upstream from the Pck2p-Pmk1p MAPK signaling pathway.
View Article and Find Full Text PDFCell Signal
April 2008
Department of Genetics and Microbiology, Facultad de Biología, University of Murcia, 30071, Campus Universitario de Espinardo, Murcia, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!