The frequency of zygomycosis has increased considerably over recent years mainly in immunocompromised and diabetic patients. Little is known about the effects of host innate immunity against different Zygomycetes especially under the influence of antifungal agents. The antifungal activity of human polymorphonuclear leucocytes (PMN) in combination with liposomal amphotericin B (LAMB), amphotericin B lipid complex (ABLC), voriconazole (VRC) and posaconazole (PSC) against Rhizopus oryzae and Rhizopus microsporus, frequently isolated Zygomycetes, were studied and compared with Absidia corymbifera, a less pathogenic Zygomycete. Antifungal activity was evaluated as per cent of hyphal damage using the XTT metabolic assay. While A. corymbifera was more susceptible to PMN than the other two Zygomycetes, R. microsporus appeared to be the most susceptible to combined effects of amphotericin B formulations and VRC with PMN. LAMB exhibited synergistic activity with PMN in inducing hyphal damage to R. microsporus but not to the other fungi. In contrast, ABLC exhibited synergistic or additive activity with PMN against all three fungi. Among triazoles, only VRC exhibited additive effect with PMN against R. microsporus. Lipid formulations of amphotericin B and particularly ABLC interact with PMN predominantly in inducing augmented hyphal damage to three different species of Zygomycetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1439-0507.2007.01457.x | DOI Listing |
ACS Infect Dis
January 2025
Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil.
Plants provide an abundant source of potential therapeutic agents, including a diverse array of compounds, such as cyclotides, which are peptides known for their antimicrobial activity. Cyclotides are multifaceted molecules with a wide range of biological activities. Their unique topology forms a head-to-tail cyclic structure reinforced by a cysteine knot, which confers chemical and thermal stability.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.
Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, People's Republic of China.
Five undescribed polyprenylated xanthones (, , , , and ) and 27 known compounds were isolated from resins, and the antifungal activities of 15 of them were investigated. Compound exhibited notable in vitro antifungal effects against with an IC value of 3.54 μg/mL, superior to isoprothiolane (10.
View Article and Find Full Text PDFCureus
December 2024
Nephrology, Hospital Regional Hans Dieter Schmidt, Joinville, BRA.
Fungal peritonitis is an uncommon but serious complication that can occur in patients undergoing peritoneal dialysis. It represents a small percentage of all peritonitis cases in these patients. Its diagnosis can be challenging due to the slow growth of fungi and frequent negative culture results.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
Endophytic fungi live in healthy plant tissues and organs and are a major source of natural bioactive compounds. In this study, we found that an endophytic fungus, CEF642, isolated from the healthy cotton roots, suppressed by up to 53% after 15 days in a confrontation culture. Genome sequencing of CEF642 and mass spectrometry study of its metabolites were used to identify its primary antagonists.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!