A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A canonical neural circuit for cortical nonlinear operations. | LitMetric

A canonical neural circuit for cortical nonlinear operations.

Neural Comput

Center for Biological and Computational Learning, and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Published: June 2008

A few distinct cortical operations have been postulated over the past few years, suggested by experimental data on nonlinear neural response across different areas in the cortex. Among these, the energy model proposes the summation of quadrature pairs following a squaring nonlinearity in order to explain phase invariance of complex V1 cells. The divisive normalization model assumes a gain-controlling, divisive inhibition to explain sigmoid-like response profiles within a pool of neurons. A gaussian-like operation hypothesizes a bell-shaped response tuned to a specific, optimal pattern of activation of the presynaptic inputs. A max-like operation assumes the selection and transmission of the most active response among a set of neural inputs. We propose that these distinct neural operations can be computed by the same canonical circuitry, involving divisive normalization and polynomial nonlinearities, for different parameter values within the circuit. Hence, this canonical circuit may provide a unifying framework for several circuit models, such as the divisive normalization and the energy models. As a case in point, we consider a feedforward hierarchical model of the ventral pathway of the primate visual cortex, which is built on a combination of the gaussian-like and max-like operations. We show that when the two operations are approximated by the circuit proposed here, the model is capable of generating selective and invariant neural responses and performing object recognition, in good agreement with neurophysiological data.

Download full-text PDF

Source
http://dx.doi.org/10.1162/neco.2008.02-07-466DOI Listing

Publication Analysis

Top Keywords

divisive normalization
12
circuit
5
operations
5
canonical neural
4
neural circuit
4
circuit cortical
4
cortical nonlinear
4
nonlinear operations
4
operations distinct
4
distinct cortical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!