A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Figure-ground separation by cue integration. | LitMetric

Figure-ground separation by cue integration.

Neural Comput

Computer Science Department, University of Southern California, Los Angeles, CA, 90089, U.S.A.

Published: June 2008

This letter presents an improved cue integration approach to reliably separate coherent moving objects from their background scene in video sequences. The proposed method uses a probabilistic framework to unify bottom-up and top-down cues in a parallel, "democratic" fashion. The algorithm makes use of a modified Bayes rule where each pixel's posterior probabilities of figure or ground layer assignment are derived from likelihood models of three bottom-up cues and a prior model provided by a top-down cue. Each cue is treated as independent evidence for figure-ground separation. They compete with and complement each other dynamically by adjusting relative weights from frame to frame according to cue quality measured against the overall integration. At the same time, the likelihood or prior models of individual cues adapt toward the integrated result. These mechanisms enable the system to organize under the influence of visual scene structure without manual intervention. A novel contribution here is the incorporation of a top-down cue. It improves the system's robustness and accuracy and helps handle difficult and ambiguous situations, such as abrupt lighting changes or occlusion among multiple objects. Results on various video sequences are demonstrated and discussed. (Video demos are available at http://organic.usc.edu:8376/ approximately tangx/neco/index.html .).

Download full-text PDF

Source
http://dx.doi.org/10.1162/neco.2008.03-06-176DOI Listing

Publication Analysis

Top Keywords

figure-ground separation
8
cue integration
8
video sequences
8
top-down cue
8
cue
6
separation cue
4
integration letter
4
letter presents
4
presents improved
4
improved cue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!