Because of their high kinetic barrier and thermodynamic favorability under moderately reducing atmospheric composition photochemical approaches appear to be ideally suited to the direct reduction of solvated nitrogen gas. Ferrous iron has been investigated as an electron donor, as it has a highly tunable redox character and is environmentally ubiquitous. Recent advances in mineralogy connected to the field of environmental remediation have led to the identification of an important class of rusts which have reductive potentials comparable to Fe(0). These materials possess redox couples that are, potentially, capable of overcoming the kinetic barrier to the production of NH(3). In this study, we attempted to produce ammonia from N(2) by oxidizing white rust both photochemically and in a dark reaction. All results indicated the reaction was inhibited by competing reactions; primarily the reduction of H(2)O to H(2). However, the dark reactions showed limited potential for reduction up to 1.4 mM. As a result, we turned to the question of closure temperature; the minimum temperature of rapid reaction based on a choice of reductant, which we demonstrate a model for its estimation. Due to the high thermodynamic energy of the N2-* intermediate, we conclude that aqueous photochemical reduction under the conditions studied here is an unlikely prebiotic source for reactive, i.e. reduced, nitrogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11084-008-9122-9 | DOI Listing |
Environ Sci Process Impacts
January 2025
Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, 80309, USA.
Wildfires can severely degrade soils and watersheds. Post-fire rain events can leach ashes and altered dissolved organic matter (DOM) into streams, impacting water quality and carbon biogeochemistry. The photochemical properties and persistence of DOM from wildfire ash leachates are not well understood.
View Article and Find Full Text PDFACS Nano
January 2025
National Synchrotron Light source II, Brookhaven National Laboratory, Upton, New York 11973, United States.
Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses.
View Article and Find Full Text PDFSe Pu
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C, Aarhus 8000, Denmark.
Pyruvic acid is an omnipresent compound in nature and is found both in the gas phase and in the particle phase of the atmosphere as well as in aqueous solution in the hydrosphere. Despite much literature on the photochemical degradation and stability of pyruvic acid in different chemical environments, the study of simultaneous interactions between gas-phase pyruvic acid or similar carboxylic acids with water and ions is not well-understood. Here, we present a study of microhydrated molecular clusters containing pyruvic acid and the structurally analogous carboxylic acids lactic acid, propionic acid, and 2,2-dihydroxypropanoic acid by probing geometries, binding free energies, hydrate distributions, as well as their infrared (IR) absorption spectra.
View Article and Find Full Text PDFLuminescence
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!