Traditionally, organisms have been classified on the basis of their phenotype. Recently, genotype-based classification has become possible through the development of sequencing technology. However, it is still difficult to apply sequencing approaches to the analysis of a large number of species due to the cost and labor. In most biological fields, the analysis of complex systems comprising various species has become an important theme, demanding an effective method for handling a vast number of species. In this paper, we have demonstrated, using plants, fish, and insects, that genome profiling, a compact technology for genome analysis, can classify organisms universally. Surprisingly, in all three of the domains of organisms tested, the phylogenetic trees generated from the phenotype topologically matched completely those generated from the genotype. Furthermore, a single probe was sufficient for the genome profiling, thereby demonstrating that this methodology is universal and compact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1893011PMC
http://dx.doi.org/10.1155/2007/27894DOI Listing

Publication Analysis

Top Keywords

number species
8
genome profiling
8
solution universal
4
universal classification
4
species
4
classification species
4
species based
4
based genomic
4
genomic dna
4
dna traditionally
4

Similar Publications

Gastric habronematidosis in mules: Gastroscopy and histopathology-based diagnosis.

Res Vet Sci

December 2024

Equine Medicine and Surgery Research Line (LIMCE), CENTAURO Research Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad de Antioquia, Medellín 050010, Antioquia, Colombia.

This cross-sectional study aimed to describe the presence of gastric habronematidosis using gastroscopy and histopathology as diagnostic methods, in addition to evaluating the relationship between the parasite presence and concurrent gastric diseases. Numerous studies have been carried out with equines, mules not being targeted even though these are representative species because of number and the various agricultural tasks they perform worldwide. To fill this gap in the literature, this study evaluated a population of 97 male and female mules over two years old using two diagnostic methods.

View Article and Find Full Text PDF

Adipocyte-derived small extracellular vesicles exacerbate diabetic ischemic heart injury by promoting oxidative stress and mitochondrial-mediated cardiomyocyte apoptosis.

Redox Biol

December 2024

Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biomedical Engineering, UAB, Birmingham, AL, USA. Electronic address:

Background: Diabetes increases ischemic heart injury via incompletely understood mechanisms. We recently reported that diabetic adipocytes-derived small extracellular vesicles (sEV) exacerbate myocardial reperfusion (MI/R) injury by promoting cardiomyocyte apoptosis. Combining in vitro mechanistic investigation and in vivo proof-concept demonstration, we determined the underlying molecular mechanism responsible for diabetic sEV-induced cardiomyocyte apoptosis after MI/R.

View Article and Find Full Text PDF

An empirical equation relating electrophoretic mobility and ionic strength was proposed. The equation includes a number of parameters that are found using the mobilities of reference ions: two coefficients in the numerator describing the linear relationship of the multiplier in front of the square root of the ionic strength with the product of the ion mobility in the background electrolyte (BGE) without additives by the modulus of the charge number, raised to a certain power, and also the multiplier in the denominator before the square root of the ionic strength. The proposed equation was tested using the mobilities measured in BGEs with the addition of sodium chloride to adjust ionic strength and sulfated β-cyclodextrin (S-β-CD) for 11 anions with charge numbers from -1 to -4.

View Article and Find Full Text PDF

Understanding the genetics of sex determination in insects and its relevance to genetic pest management.

Insect Mol Biol

December 2024

Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.

Sex determination pathways regulate male and female-specific development and differentiation and offer potential targets for genetic pest management methods. Insect sex determination pathways are comprised of primary signals, relay genes and terminal genes. Primary signals of coleopteran, dipteran, hymenopteran and lepidopteran species are highly diverse and regulate the sex-specific splicing of relay genes based on the primary signal dosage, amino acid composition or the interaction with paternally inherited genes.

View Article and Find Full Text PDF

Cryptococcosis is a lethal mycosis instigated by the pathogenic species Cryptococcus neoformans and Cryptococcus gattii, primarily affects the lungs, manifesting as pneumonia, and the brain, where it presents as meningitis. Mortality rate could reach 100% if infections remain untreated in cryptococcal meningitis. Treatment options for cryptococcosis are limited and and there are no licensed vaccines clinically available to treat or prevent cryptococcosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!