Lagged cells.

Neurosignals

Department of Ophthalmology, Medical College of Georgia, Augusta, GA 30912, USA.

Published: May 2008

The timing of the retinal input to the lateral geniculate nucleus is highly modified in lagged cells. Evidence is reviewed for how the responses of these cells are generated, how their structure and function differs from their nonlagged neighbors, and what their projections to cortex might do.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000111564DOI Listing

Publication Analysis

Top Keywords

lagged cells
8
cells timing
4
timing retinal
4
retinal input
4
input lateral
4
lateral geniculate
4
geniculate nucleus
4
nucleus highly
4
highly modified
4
modified lagged
4

Similar Publications

Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell-cell interactions in live-cell imaging data.

View Article and Find Full Text PDF

Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock.

View Article and Find Full Text PDF

Strategic Integration of Machine Learning in the Design of Excellent Hybrid Perovskite Solar Cells.

J Phys Chem Lett

January 2025

College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China.

The photoelectric conversion efficiency (PCE) of perovskites remains beneath the Shockley-Queisser limit, despite its significant potential for solar cell applications. The present focus is on investigating potential multicomponent perovskite candidates, particularly on the application of machine learning to expedite band gap screening. To efficiently identify high-performance perovskites, we utilized a data set of 1346 hybrid organic-inorganic perovskites and employed 11 machine learning models, including decision trees, convolutional neural networks (CNNs), and graph neural networks (GNNs).

View Article and Find Full Text PDF

The underlying mechanisms explaining the differential course of SARS-CoV-2 infection and the potential clinical consequences after COVID-19 resolution have not been fully elucidated. As a dysregulated mitochondrial activity could impair the immune response, we explored long-lasting changes in mitochondrial functionality, circulating cytokine levels, and metabolomic profiles of infected individuals after symptoms resolution, to evaluate whether a complete recovery could be achieved. Results of this pilot study evidenced that different parameters of aerobic respiration in lymphocytes of individuals recuperated from a severe course lagged behind those shown upon mild COVID-19 recovery, in basal conditions and after simulated reinfection, and they also showed altered glycolytic capacity.

View Article and Find Full Text PDF

Structural characterization of two γδ TCR/CD3 complexes.

Nat Commun

January 2025

Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.

The T-cell receptor (TCR)/CD3 complex plays an essential role in the immune response and is a key player in cancer immunotherapies. There are two classes of TCR/CD3 complexes, defined by their TCR chain usage (αβ or γδ). Recently reported structures have revealed the organization of the αβ TCR/CD3 complex, but similar studies regarding the γδ TCR/CD3 complex have lagged behind.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!