AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal pump.

J Biol Chem

Laboratorio de Biología Molecular Vegetal, Centro de Estudios Avanzados en Zonas Aridas (CEAZA), La Serena 1720170, Chile.

Published: April 2008

The Arabidopsis thaliana AtHMA1 protein is a member of the P(IB)-ATPase family, which is implicated in heavy metal transport. However, sequence analysis reveals that AtHMA1 possesses a predicted stalk segment present in SERCA (sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase)-type pumps that is involved in inhibition by thapsigargin. To analyze the ion specificity of AtHMA1, we performed functional complementation assays using mutant yeast strains defective in Ca(2+) homeostasis or heavy metal transport. The heterologous expression of AtHMA1 complemented the phenotype of both types of mutants and, interestingly, increased heavy metal tolerance of wild-type yeast. Biochemical analyses were performed to describe the activity of AtHMA1 in microsomal fractions isolated from complemented yeast. Zinc, copper, cadmium, and cobalt activate the ATPase activity of AtHMA1, which corroborates the results of metal tolerance assays. The outcome establishes the role of AtHMA1 in Cd(2+) detoxification in yeast and suggests that this pump is able to transport other heavy metals ions. Further analyses were performed to typify the active Ca(2+) transport mediated by AtHMA1. Ca(2+) transport displayed high affinity with an apparent K(m) of 370 nm and a V(max) of 1.53 nmol mg(-1) min(-1). This activity was strongly inhibited by thapsigargin (IC(50) = 16.74 nm), demonstrating the functionality of its SERCA-like stalk segment. In summary, these results demonstrate that AtHMA1 functions as a Ca(2+)/heavy metal pump. This protein is the first described plant P-type pump specifically inhibited by thapsigargin.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M800736200DOI Listing

Publication Analysis

Top Keywords

heavy metal
12
athma1
10
ca2+/heavy metal
8
metal pump
8
metal transport
8
stalk segment
8
metal tolerance
8
analyses performed
8
activity athma1
8
ca2+ transport
8

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) is a rapidly evolving in-situ multi-element analysis technique that has significantly advanced the field of liquid analysis. This study employs a femtosecond laser for quantitative analysis of heavy metals in flowing liquids, exploring its detection sensitivity and accuracy. Femtosecond pulsed laser excitation of water in a dynamic environment generates plasma while effectively preventing liquid splashing.

View Article and Find Full Text PDF

Sensitive fluorescence turn-on sensing of hydroxyl radical and glucose based on the oxidative degradation of reductive organic cage.

Talanta

January 2025

College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:

The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!