Hexamerins are stage specifically sequestered during the non-feeding stages mainly by the fat body cells from hemolymph through ecdysteroid regulated receptor-mediated endocytosis. 20-Hydroxyecdysone (20E) stimulates the tyrosine kinase-mediated phosphorylation of the 120kDa hexamerin receptor in the rice moth, Corcyra cephalonica. Here, we demonstrate that phosphorylation of the hexamerin receptor by HP19-regulated-20E-dependent-tyrosine kinase is a critical regulator for its activation, and is required for hexamerin uptake. Hexamerin receptor is phosphorylated only in the hexamerin sequestering tissues. The receptor phosphorylation is a prerequisite for hexamerin uptake and both phosphorylation and concomitant uptake are developmentally regulated. In addition, endogenous fat body tyrosine kinase activity is also developmentally and hormonally regulated. 20E induces the tyrosine kinase activity both in vivo as well as ex vivo, and the receptor phosphorylation is likely an extra-cellular event. The hemolymph protein, HP19 inhibits the 20E-induced phosphorylation by inhibiting tyrosine kinase activity. These inhibitions are rapid in homogenate preparations and are unaffected by the inhibitors of transcription and translation. We propose that hexamerin sequestration is negatively regulated by active HP19 at the feeding larval stage, thus preventing the uptake. During the non-feeding pupal stage, high ecdysteroid titer and negligible HP19 activity, positively regulates the receptor phosphorylation resulting in hexamerin uptake. These studies are therefore the first evidence of hexamerin uptake regulated by the orchestration of 20E and HP19 at a nongenomic level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2007.11.007DOI Listing

Publication Analysis

Top Keywords

hexamerin uptake
20
hexamerin receptor
16
receptor phosphorylation
16
tyrosine kinase
12
kinase activity
12
hexamerin
10
phosphorylation
8
hemolymph protein
8
protein hp19
8
rice moth
8

Similar Publications

The evolution of vitamin C biosynthesis and transport in animals.

BMC Ecol Evol

June 2022

Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.

Background: Vitamin C (VC) is an indispensable antioxidant and co-factor for optimal function and development of eukaryotic cells. In animals, VC can be synthesized by the organism, acquired through the diet, or both. In the single VC synthesis pathway described in animals, the penultimate step is catalysed by Regucalcin, and the last step by L-gulonolactone oxidase (GULO).

View Article and Find Full Text PDF

Clathrin-dependent endocytosis predominantly mediates protein absorption by fat body from the hemolymph in Bombyx mori.

Insect Sci

August 2020

Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China.

During insect larval-pupal metamorphosis, proteins in the hemolymph are absorbed by the fat body for the maintenance of intracellular homeostasis; however, the type of proteins and how these proteins are internalized into the fat body are unclear. In Bombyx mori, the developmental profiles of total proteins in the hemolymph and fat body showed that hemolymph-decreased protein bands (55-100 kDa) were in accordance with those protein bands that increased in the fat body. Inhibition of clathrin-dependent endocytosis predominantly blocked the transportation of 55-100 kDa proteins from the hemolymph into the fat body, which was further verified by RNA interference treatment of Bmclathrin.

View Article and Find Full Text PDF

RNA interference insecticides have received increasing attention in recent years due to their classification as a reduced-risk biopesticide and their proposed faster path to registration compared with conventional synthetic insecticides. The goal of this study was to synthesize and compare efficacy of 62 double-stranded RNAs (dsRNAs) from 31 target genes against the pest termite species, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Fifty-seven dsRNAs of ~125 base pairs each were successfully synthesized.

View Article and Find Full Text PDF

Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues.

View Article and Find Full Text PDF

The process of uptake of hexamerins during metamorphosis from insect haemolymph by fat body cells is reminiscent of receptor-mediated endocytosis. Previously, we had identified a hexamerin-binding protein (HBP) and reported for the first time that uptake of hexamerins is dependent on the phosphorylation of HBP partly by a tyrosine kinase, which is, in turn, activated by 20-hydroxyecdysone (20E). However, the exact nature of HBP and the mechanism of interaction are still unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!