Acceleration of flowering would be beneficial for breeding trees with a long juvenile phase; conversely, inhibition of flowering would prevent the spread of transgenes from the genetically modified trees. We have previously isolated and characterized several MADS genes from silver birch (Betula pendula Roth). In this study, we investigated the more detailed function of one of them, BpMADS4, a member of the APETALA1/FRUITFULL group of MADS genes. The expression of BpMADS4 starts at very early stage of the male and female inflorescence development and the activity is high in the apex of the developing inflorescence. Later, some expression is detected in the bracts and in the flower initials. Ectopic expression of BpMADS4 accelerates flowering dramatically in normally flowering clones and also in the early-flowering birch clone, in which the earliest line flowered about 11 days after rooting, when the saplings were only 3 cm high. The birches transformed with the BpMADS4 antisense construct showed remarkable delay in flowering and the number of flowering individuals was reduced. Two of the transformed lines did not show any signs of flower development during our 2-year study, whereas all the control plants formed inflorescences within 107 days. Our results show that BpMADS4 has a critical role in the initiation of birch inflorescence development and that BpMADS4 seems to be involved in the transition from vegetative to reproductive development. Therefore, BpMADS4 provides a promising tool for the genetic enhancement of forest trees.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3054.2007.00947.xDOI Listing

Publication Analysis

Top Keywords

bpmads4
8
silver birch
8
birch betula
8
betula pendula
8
mads genes
8
expression bpmads4
8
inflorescence development
8
development bpmads4
8
flowering
6
bpmads4 central
4

Similar Publications

There have been a considerable number of studies that have successfully sped up the flowering cycle in woody perennial horticultural species. One particularly successful study in apple () accelerated flowering using a silver birch () MADS-box gene hich yielded a good balance of vegetative growth to support subsequent flower and fruit development. In this study, was constitutively expressed in European pear () to establish whether this could be used as a tool in a rapid pear breeding program.

View Article and Find Full Text PDF

Rapid cycle breeding uses transgenic early flowering plants as crossbreed parents to facilitate the shortening of breeding programs for perennial crops with long-lasting juvenility. Rapid cycle breeding in apple was established using the transgenic genotype T1190 expressing the gene of silver birch. In this study, the genomes of T1190 and its non-transgenic wild-type PinS (F1-offspring of 'Pinova' and 'Idared') were sequenced by Illumina short-read sequencing in two separate experiments resulting in a mean sequencing depth of 182× for T1190 and 167× for PinS.

View Article and Find Full Text PDF

The approach presented here can be applied to reduce the time needed to introduce traits from wild apples into null segregant advanced selections by one-fourth. Interesting traits like resistances to pathogens are often found within the wild apple gene pool. However, the long juvenile phase of apple seedlings hampers the rapid introduction of these traits into new cultivars.

View Article and Find Full Text PDF

Rapid cycle breeding in apple is a new approach for the rapid introgression of agronomically relevant traits (e.g. disease resistances) from wild apple species into domestic apple cultivars (Malus × domestica Borkh.

View Article and Find Full Text PDF

Breeding of apple (Malus × domestica) remains a slow process because of protracted generation cycles. Shortening the juvenile phase to achieve the introgression of traits from wild species into prebreeding material within a reasonable time frame is a great challenge. In this study, we evaluated early flowering transgenic apple lines overexpressing the BpMADS4 gene of silver birch with regard to tree morphology in glasshouse conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!