Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mechanisms of photoprotection of photosynthesis and dissipation of excitation energy in rice leaves in response to potassium (K) deficiency were investigated. Net photosynthetic rate and the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase decreased under K deficiency. Compared with the control, non-photochemical quenching of Chl fluorescence increased in K-deficient plant, whereas the efficiency of excitation transfer (F'(v)/F'(m)) and the photochemical quenching coefficient (q(P)) decreased. Thus, thermal dissipation of excitation energy increased as more excess electrons were accumulated in the photosynthetic chain. The electron transport rate through PSII (J(f)) was more sensitive to O2 concentration, and the fraction of electron transport rate required to sustain CO2 assimilation and photorespiration (J(g)/J(f)) was significantly decreased under K deficiency compared with the control. Furthermore, the alternative electron transport (J(a)/J(f)) was increased, indicating that a considerable amount of electrons had been transported to O2 during the water-water cycle in the K-deficient leaves. Although the fraction of electron transport to photorespiration (J(o)/J(f)) was also increased in the K-deficient leaves, it was less sensitive than that of the water-water cycle. With the generation of reactive oxygen species level, the activities of superoxide dismutase and ascorbate peroxidase, two of the key enzymes involved in scavenging of active oxygen species in the water-water cycle, also increased in K-deficient rice. Therefore, it is likely that a series of photoprotective mechanisms were initiated in rice plants in response to K deficiency and the water-water cycle might be critical for protecting photosynthetic apparatus under K deficiency in rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1399-3054.2007.00978.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!