Introduction: Osteoblasts depend on a constant supply of prosurvival signals from their microenvironment. When trophic factors become limited by injury or disease, cells undergo apoptosis. This study establishes the regulation and function of Bim, Bak, and Bax in this response.
Materials And Methods: MBA-15.4 murine osteoblasts and primary human bone marrow stromal cells (hBMSCs) were subjected to growth factor depletion by serum starvation (1% FCS or serum withdrawal). Protein phosphorylation, activation, or expression was quantified by Western blotting and gene expression by real-time PCR. Regulation of apoptosis in response to serum depletion was determined using siRNA specific for Bim, Bak, or Bax, followed by TUNEL staining. Statistical significance was determined by one-way ANOVA after multiple experimental repeats.
Results: Serum depletion strongly induced expression of the proapoptotic protein Bim in both hBMSC and MBA-15.4 osteoblasts. Detailed analysis of the mouse line showed that both mRNA and protein levels rose from 2 h to peak between 16 and 24 h, in conjunction with activation of caspase 3 and rising levels of apoptosis. Both actinomycin D and cycloheximide prevented this increase in Bim, indicating transcriptional regulation. Serum deprivation caused immediate and sustained decreases in phosphorylation of prosurvival kinases, ERK and PKB, preceding upregulation of Bim. Pathway inhibitors, U0126 or LY294002, strongly increased both Bim mRNA and protein, confirming that both kinases regulate Bim. These inhibitors also induced osteoblast apoptosis within 24-72 h. JC-1 tracer detected mitochondrial potential disruption after serum deprivation, indicating involvement of the intrinsic pathway. Moreover, activation-associated conformational changes were detected in the channel-formers, Bax and Bak. Selective knockdown of Bim or Bak by siRNA protected osteoblasts from serum depletion-induced apoptosis by 50%, whereas knockdown of Bax alone or Bak and Bax together reduced apoptosis by 90%.
Conclusions: Our data indicate that Bim, Bak, and Bax actively mediate osteoblast apoptosis induced by trophic factor withdrawal. The complex upstream regulation of Bim may provide targets for therapeutic enhancement of osteoblast viability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820735 | PMC |
http://dx.doi.org/10.1359/jbmr.080106 | DOI Listing |
Cell Death Differ
December 2024
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
Senescent cells are commonly detected in tumors after chemo and radiotherapy, leading to a characteristic cellular phenotype that resists apoptotic cell death. In this study, we used multiple melanoma cell lines, molecular markers, and therapies to investigate the key role of the BCL-2 family proteins in the survival of senescent cells. We first used BH3 profiling to assess changes in apoptotic priming upon senescence induction.
View Article and Find Full Text PDFBMC Mol Cell Biol
October 2024
Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan.
Background: Malignant gliomas exhibit rapid tumor progression and resistance to treatment, leading to high lethality. One of the causes is the reduced progression of apoptosis in glioma cells. Layilin is a type 1 transmembrane protein with a C-type lectin motif in its extracellular domain.
View Article and Find Full Text PDFCell Death Differ
October 2024
Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
BCL-2 family proteins regulate apoptosis by initiating mitochondrial outer membrane permeabilization (MOMP). Activation of the MOMP effectors BAX and BAK is controlled by the interplay of anti-apoptotic BCL-2 proteins (e.g.
View Article and Find Full Text PDFJ Agric Food Chem
October 2024
School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
This study investigates the properties and potential applications of phycoerythrin 545, a naturally occurring light-harvesting pigment protein from . Phycoerythrin 545, characterized by its bright red color and maximum absorption wavelength at 545 nm, was extracted using freeze-thawing methods, further purified, and analyzed using chromatographic, spectroscopic techniques, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phycoerythrin 545 consists of two subunits, primarily α and β, but lacks the γ subunit, and is stable at 4 °C within a pH range of 3-10.
View Article and Find Full Text PDFExp Eye Res
November 2024
McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA. Electronic address:
Apoptosis plays prominent roles during organ development, maturation and homeostasis. In the retina, Bcl-2 family members function through the intrinsic cell death pathway with vital roles during vascular development and hyperoxia-mediated vessel obliteration during oxygen induced ischemic retinopathy (OIR). Bim, a BH3 only protein Bcl-2 family member, binds and activates Bax and/or Bak to facilitate apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!