This study demonstrates that benzo[g]chrysene-11,12-dihydrodiol (B[g]C-11,12-dihydrodiol) derived from the fjord-region parent hydrocarbon B[g]C is oxidized by rat AKR1C9 with a k c a t/ K m 100 times greater than that observed with the commonly studied bay-region benzo[ a]pyrene-7,8-dihydrodiol (B[a]P-7,8-dihydrodiol). Conversely, despite its strikingly similar structure to B[ g]C-11,12-dihydrodiol, benzo[ c]phenanthrene-3,4-dihydrodiol (B[ c]Ph-3,4-dihydrodiol) is consumed by AKR1C9 at sluggish rates comparable to those observed with B[ a]P-7,8-dihydrodiol. CD spectroscopy revealed that only the (+)-B[ g]C-11,12-dihydrodiol stereoisomer was oxidized, while AKR1C9 oxidized both stereoisomers of B[a]P-7,8-dihydrodiol and B[ c]Ph-3,4-dihydrodiol. The (+)- S, S- and (-)- R, R-stereoisomers of B[g]C-11,12-dihydrodiol were purified by chiral RP-HPLC. The 11 S,12 S-stereoisomer was oxidized at the same rate as the racemate. The 11 R,12 R-stereoisomer did not act as an inhibitor to AKR1C9, indicating that the (-)- R, R-stereoisomer was excluded from the active site. To understand the basis of stereochemical preference, we screened alanine-scanning mutants of active site residues of AKR1C9. These studies revealed that in comparison to the wild type, F129A, W227A, and Y310A enabled the oxidation of both the B[g]C-11 S,12 S-dihydrodiol and the B[g]C-11 R,12 R-dihydrodiol. Molecular modeling revealed that unlike B[a]P-7,8-dihydrodiol and B[ c]Ph-3,4-dihydrodiol, B[g]C-11,12-dihydrodiol enantiomers are significantly bent out of plane. As a consequence, the (-)- R, R-stereoisomer was prevented from binding to the active site because of unfavorable interactions with F129, W227, or Y310. Additionally, LC/MS validated that the product of the reaction of B[g]C-11,12-dihydrodiol oxidation catalyzed by AKR1C9 was B[g]C-11,12-dione, which was trapped in vitro with the nucleophile 2-mercaptoethanol. The similarity between rates of trans-dihydrodiol oxidation by the rat and human liver specific AKRs (AKR1C9 and AKR1C4) implicate these enzymes in hepatocarcinogenesis in rats observed with the fjord-region PAH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440589PMC
http://dx.doi.org/10.1021/tx7003695DOI Listing

Publication Analysis

Top Keywords

active site
12
akr1c9
8
basis stereochemical
8
stereochemical preference
8
b[a]p-78-dihydrodiol c]ph-34-dihydrodiol
8
fjord-region benzo[g]chrysene-1112-dihydrodiol
4
benzo[g]chrysene-1112-dihydrodiol benzo[c]phenanthrene-34-dihydrodiol
4
benzo[c]phenanthrene-34-dihydrodiol substrates
4
substrates rat
4
rat liver
4

Similar Publications

In the leucine (Leu) biosynthesis pathway, homeostasis is achieved through a feedback regulatory mechanism facilitated by the binding of the end-product Leu at the C-terminal regulatory domain of the first committed enzyme, isopropylmalate synthase (IPMS). In vitro studies have shown that removing the regulatory domain abolishes the feedback regulation on plant IPMS while retaining its catalytic activity. However, the physiological consequences and underlying molecular regulation on Leu flux upon removing the IPMS C-terminal domain remain to be explored in plants.

View Article and Find Full Text PDF

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

A terpene synthase gene (mtas) from Menisporopsis theobromae BCC 4162 was heterologously expressed in Aspergillus oryzae NSAR1, resulting in the production of (+)-aristolochene. Mutations were introduced in MtAS at aromatic residues (Y83, F103, F169, and W323) surrounding the active site, which are critical for precursor cyclisation and intermediate stabilisation during aristolochene biosynthesis. Transformants harbouring mutated mtas, specifically F103W, F169A and F169W, produced (2R,4S,5R,7S)-2-hydroxyaristolochene as the major product, along with aristolochene and other tentative metabolites, including germacrene A and sesquiterpenoids.

View Article and Find Full Text PDF

Freshwater ecosystems face significant threats, including pollution, habitat loss, invasive species, and climate change. To address these challenges, management strategies and restoration efforts have been broadly implemented. Across Europe, such efforts have resulted in overall improvements in freshwater biodiversity, but recovery has stalled or failed to occur in many localities, which may be partly caused by the limited dispersal capacity of many species.

View Article and Find Full Text PDF

[FeFe] hydrogenases make up a structurally diverse family of metalloenzymes that catalyze proton/dihydrogen interconversion. They can be classified into phylogenetically distinct groups denoted A-G, which differ in structure and reactivity. Prototypical Group A hydrogenases have high turnover rates and remarkable energy efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!